Thermochemistry of stuffed quartz-derivative phases along the join LiAlSiO₄-SiO₂

HONGWU XU,^{1,*,†} PETER J. HEANEY,^{1,‡} ALEXANDRA NAVROTSKY,^{1,†} LETITIA TOPOR,¹ AND JUN LIU²

¹Department of Geosciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, U.S.A. ²Center for High Pressure Research and Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11794, U.S.A.

ABSTRACT

Enthalpies of drop-solution ($\Delta H_{drop-soln}$) of a suite of stuffed quartz-derivative phases with the composition Li_{1-x}Al_{1-x}Si_{1+x}O₄ ($0 \le x \le 1$) have been measured in molten 2PbO·B₂O₃ at 974 K. Substitution of Si⁴⁺ for Li⁺+Al³⁺ results in more exothermic enthalpies of drop-solution, which is consistent with behavior seen in other crystalline and glassy aluminosilicates. Al/Si ordering serves to stabilize these phases, and long-range ordering for compositions with x approximately <0.3 can be discerned in both calorimetric data and in structural data obtained by electron and synchrotron X-ray diffraction (XRD). In contrast, a structural but not an energetic discontinuity is apparent at x \cong 0.65, which corresponds to a compositionally induced α - β quartz transition with a small enthalpy of transformation.

An enthalpy for the Al/Si order-disorder reaction in β -eucryptite was measured as 25.9 ± 2.6 kJ/ mol. Standard molar enthalpies of formation of the stuffed quartz-derivative phases from constituent oxides ($\Delta H_{f,ox}^0$) and elements ($\Delta H_{f,el}^0$) at 298 K also are presented. $\Delta H_{f,ox}^0 = -69.78 \pm 1.38$ kJ/mol and $\Delta H_{f,el}^0 = -2117.84 \pm 2.50$ kJ/mol for β -eucryptite, which are in good agreement with results previously determined by HF solution calorimetry at 346.7 K (Barany and Adami 1966). The enthalpies of formation of other compositions are reported for the first time.