The effect of temperature and bulk composition on the solution mechanism of phosphorus in peraluminous haplogranitic magma

B.O. MYSEN,^{1,*} F. HOLTZ,^{2,†} M. PICHAVANT,² J.-M. BENY,² AND J.-M. MONTEL³

¹Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, N.W., Washington, D.C. 20015, U.S.A.

²CRSCM-CNRS, 1a, rue de la Ferollerie, 45071 Orleans, France

³Department de Geologie, URA 10 du CNRS, Universite Blaise Pascal, 5 rue Kessler, 63038 Clermont-Ferrand, France

ABSTRACT

Solution mechanisms of P in peraluminous glasses and melts in the system CaO-Na₂O-K₂O-Al₂O₃-SiO₂-P₂O₅ have been examined with in-situ microRaman spectroscopy from ambient temperature to near 1200 °C. The principal aim was to examine the relative stabilities of phosphate complexes as functions of P content, peraluminosity, and temperature. Increasing peraluminosity was accomplished by increasing the proportions of Al³⁺ and Ca²⁺ of constant SiO₂ content. The molar ratio Al₂O₃/ (CaO+Na₂O+K₂O) (A/CNK) ranged from ~1 to ~1.3.

In all compositions, P^{5+} is bonded to Al^{3+} to form $AlPO_4$ complexes. In addition, there is evidence for pyrophosphate complexing (P_2O_7). In melts with the highest (Ca+Na+K)/P, there is probably also a small fraction of orthophosphate complexes present. The relative importance of $AlPO_4$ -like complexes is correlated positively with peraluminosity (A/CNK), P_2O_5 content, and increasing temperature at temperatures above that of the glass transition. These structural relationships among phosphate complexes are coupled with decreasing polymerization of the aluminosilicate melts.