Pressure dependence of self-diffusion in the NaAlO₂-SiO₂ system: Compositional effects and mechanisms

JULIA G. BRYCE,* FRANK J. SPERA, AND DANIEL J. STEIN

Department of Geological Sciences and Institute for Crustal Studies, University of California, Santa Barbara, California 93106, U.S.A.

Abstract

Molecular Dynamics (MD) simulations were used to study the relationship between structure and transport properties in five liquids (NaAlO₂, Na₂Al₂SiO₆, NaAlSiO₄, Na-AlSi₂O₆, and NaAlSi₃O₈) in the system NaAlO₂-NaAlSi₃O₈ at temperatures ranging from 4000 to 6000 K and pressures from 0 to 55 GPa. Seventy simulations were carried out in the microcanonical ensemble using a simple pair-wise additive potential with Coulombic interaction and Born-Mayer repulsion. Detailed study of the coordination of O and network forming cations provides a master set of coordination environment or speciation curves. These master curves were applicable to all compositions and temperatures and were most explicit when compression (V_r/V) ; where V_r is the molar volume at a reference pressure) was used as the independent variable. The universality implied that coordination environments for network atoms O, Al, and Si depend weakly upon Si/Al, T/O, or Na/T atomic ratios for the compositions studied. Self-diffusion coefficients, computed from analysis of mean-square displacements, were used to evaluate the activation enthalpy $(H_a = E_a + PV_a)$ for self-diffusion for each species. The activation energy (E_a) for Na was independent of composition, whereas E_a for O, Si, and Al increased as Si/Al increased. Activation volume (V_a) at pressure < 15 GPa was positive for Na and negative for O, Si, and Al and decreased with increasing Si/Al for all species. An extension of the Adam-Gibbs-DiMarzio configurational entropy theory taking explicit account of ^[2]O and ^[3]O mixing explained both the variation of the pressure-derivative of the shear viscosity as a function of composition and the disappearance of "anomalous" viscosity behavior at $P > \sim 25$ GPa for all compositions in the system NaAlO₂-NaAlSi₃O₈.