Biotite dehydration, partial melting, and fluid composition: Experiments in the system KAlO₂-FeO-MgO-SiO₂-H₂O-CO₂

A.A. GRAPHCHIKOV,¹ A.N. KONILOV,¹ AND J.D. CLEMENS^{2,*}

¹Institute of Experimental Mineralogy, Russian Academy of Science, 142432 Chernogolovka, Moscow District, Russia ²School of Geological Sciences, CEESR, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, U.K.

ABSTRACT

Biotite solid-solutions are a significant H₂O reservoir in the lithosphere, and the assemblage Bt+Opx+Kfs+Qtz is commonly used to estimate a_{H_0} in high-grade metamorphic and magmatic rocks. Here we report experimental constraints on subsolidus mineral equilibria involving biotite and orthopyroxene in the system KAIO₂-MgO-FeO-SiO₂-H₂O-CO₂. Our experiments address the question of stability of biotite of a given $X_{\rm Fe}$ in the assemblage Bt+Qtz±Sa, or the stability of the assemblage Opx+Sa±Qtz. Clemens (1993) and Clemens et al. (1997) concluded that CO_2 has no effect other than to lower a_{HO} and thereby raise the solidus T. Our data at $X_{H,O}^{\text{H}} < 1$ extend these conclusions to encompass Fe-bearing systems more similar to natural rocks. From a comparison of experimental data and calculated isopleths of biotite composition in the divariant assemblage Bt+Opx+Kfs+Qtz+fluid, it appears that phlogopite-annite solid-solutions must be significantly non-ideal (at T < T800 °C) or that enstatite-ferrosilite solid-solutions must have negative values for their Margules-type parameters. Ignoring these factors would result in any calculated $a_{H,O}$ values being too low. Although various models allow us to estimate $X_{H,O}$ in H₂O-CO₂ fluids, we are still unable to use biotite equilibria to estimate $a_{H,\Omega}$ accurately during high-grade metamorphism and magma crystallization. We also consider qualitatively the effects Fe-Mg biotite solid-solution on partial melting equilibria in fluid-poor (rock-dominated) systems in which hydration-dehydration reactions control the fluid composition.