Is "metamictization" of zircon a phase transition?

E.K.H. SALJE,^{1,*} J. CHROSCH,¹ AND R.C. EWING²

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ ²Department of Nuclear Engineering and Radiological Sciences and Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-2104, U.S.A.

ABSTRACT

Diffuse X-ray scattering from single crystals of metamict zircon reveals residual crystallinity even at high fluences (up to $7.2 \times 10^{18} \alpha$ -decay events/g). The experimental evidence does not suggest that radiation-induced amorphization is a "phase transition." The observations are in good agreement with a nonconvergent, heterogeneous model of amorphization in which damage production is a random process of cascade formation and overlap at increasing fluence.

Instead of an amorphization transition, the existence of a percolation transition is postulated. At the level of radiation damage near the percolation point, the heterogeneous strain broadening of X-ray diffraction profiles is reduced whereas the particle-size broadening increases. Simultaneously, the macroscopic swelling of the zircon becomes larger than the maximum expansion of the unit-cell parameters. A suitable empirical parameter that characterizes this transition is the flux, D_s , at which the macroscopic expansion is identical to the maximum expansion of the crystallographic unit cell. In zircon, $D_s = 3.5 \cdot 10^{18} \alpha$ -decay events/g.