Aliphatic hydrocarbons in structural channels of cordierite: A first evidence from polarized single-crystal IR-absorption spectroscopy

VLADIMIR M. KHOMENKO* AND KLAUS LANGER

Institut für Angewandte Geowissenschaften I, Algemeine und Experimentelle Mineralogie, Technische Universität Berlin D-10623 Berlin, Deutschland

ABSTRACT

Polarized IR-absorption spectra were measured on inclusion-free spots, 50 µm in diameter of (100)-, (010)-, and (001)-oriented single-crystal plates of orthorhombic cordierites extracted from anatectic granitoids and their pegmatite from the western part of the Ukrainian shield. In the range 3100–2700 cm⁻¹, the spectra display four weak ($\alpha_{in} \leq ca. 7 \text{ cm}^{-1}$) and sharp ($\Delta v_{1/2} \approx 20 \text{ cm}^{-1}$) bands typical of the antisymmetric and symmetric stretching modes of $CH_{\overline{3}}$ and $-CH_{\overline{2}}$ groups of aliphatic hydrocarbons, C_nH_{2n+2} (v_{as CH3} at 2951–2959 cm⁻¹, v_{as CH2} at 2920–2923 cm⁻¹, v_{sym,CH3} at 2871–2874 cm⁻¹, $v_{sym,CH2}$ at 2850–2851). All bands are polarized in the *ac*-plane of orthorhombic cordierite. In the temperature range $123 \le T$ (K) ≤ 573 , the degree of polarization decreases as temperature increases. The band polarizations and their temperature dependence ensure that the hydrocarbons are incorporated in the cordierite matrix, i.e., in the ca. 5.8 Å wide cavities of the c-parallel channels of the crystal structure. The concentrations of alkanes, $C_n H_{2n+2}$ from band intensities, are between about 20 and about 100 ppm, corresponding to about 0.7 · 10⁻³ and about 2.3 · 10⁻³ molecules per formula unit cordieriite. Evaluation of the averaged intensities of the antisymmetric as well as symmetric C-H stretching vibrations of either species, CH_3 and $-CH_5$, yields a ratio of 1:1 between them consistent with n = 4 only, realized in butane C_4H_{10} or in a butane-rich mixture with n = 4 on average and concentrations between 0.7×10^{-3} to 2.3×10^{-3} 10^{-3} molecule pfu. Polarizations as well as molecular and cordierite-cavity sizes are consistent with an allocation of butane molecules in the channel cavities of the cordierite structure, with the molecular axes of butane predominantly parallel to b.