Three- and five-quantum ¹⁷O MAS NMR of forsterite Mg₂SiO₄ SHARON E. ASHBROOK,¹ ANDREW J. BERRY,² AND STEPHEN WIMPERIS^{1,*}

¹Physical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K. ²Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia

ABSTRACT

Three- and five-quantum ¹⁷O MAS NMR experiments are used to resolve fully the three crystallographically distinct oxygen species in forsterite (Mg₂SiO₄). The chemical shift and quadrupolar parameters extracted from these spectra are compared with the literature values obtained using conventional ¹⁷O MAS and dynamic-angle-spinning (DAS) NMR.