The Gibbs free energies and enthalpies of formation of U⁶⁺ phases: An empirical method of prediction

FANRONG CHEN,^{1,*} RODNEY C. EWING,^{1,2,†} AND SUE B. CLARK³

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104, U.S.A. ²Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063, U.S.A. ³Department of Chemistry, Washington State University, Pullman, Washington 99164, U.S.A.

ABSTRACT

Uranyl minerals form as a result of the oxidation and alteration of uraninite, UO_{2+x} . These uranyl phases are also important alteration products of the corrosion of UO_2 in used nuclear fuels under oxidizing conditions. However, the thermodynamic database for these phases is extremely limited. The Gibbs free energies and enthalpies for uranyl phases are estimated based on a method that sums polyhedral contributions. The molar contributions of the structural components to ΔG_f^0 and ΔH_f^0 are derived by multiple regression using the thermodynamic data of phases for which the crystal structures are known. In comparison with experimentally determined values, the average residuals associated with the predicted ΔG_f^0 and ΔH_f^0 for the uranyl phases used in the model are 0.08 and 0.10%, respectively, well below the limits of uncertainty for the experimentally determined values. To analyze the reliability of the predicted ΔG_f^0 values, activity-activity diagrams in SiO₂-CaO-UO₃-H₂O and CO₂-CaO-UO₃-H₂O systems at 298.15 K and 1 bar were constructed using the predicted $\Delta G_{f_0}^0$ and ΔH_f^0 for the is good agreement between the predicted mineral stability relations and field occurrences, thus providing confidence in this method for the estimation of ΔG_f^0 and ΔH_f^0 of the U⁶⁺ phases.