American Mineralogist, Volume 83, pages 947–951, 1998

Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite

NICOLA C. RICHMOND,* AND JOHN P. BRODHOLT

Research School of Geological and Geophysical Sciences, Birkbeck College and University College, Gower Street, London WC1E 6BT, U.K.

Abstract

An atomistic computer simulation study was undertaken to address the role of Al in the substitution of ferric iron into magnesium silicate perovskite, $MgSiO_3$. Calculated substitution and vacancy energies at 0 K were used to consider two different substitution mechanisms: (a) Fe³⁺ and Al independently charge balanced by vacancies or by a similar cation in another site, or (b) Fe³⁺ and Al charge balancing each other. Our results show that it is preferential by 1 to 2 eV for Fe³⁺ to substitute into an Mg site charge balanced by an Al substitution into an Si site. This is increasingly favorable if the Fe³⁺ and Al substitute into adjacent sites. The coupled substitution occurs because it is energetically unfavorable for Al to enter the dodecahedral site.