Cation dynamics and premelting in lithium metasilicate (Li₂SiO₃) and sodium metasilicate (Na₂SiO₃): A high-temperature NMR study

ANNA M. GEORGE,¹ PASCAL RICHET,^{1,*} and JONATHAN F. STEBBINS^{1,†}

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 U.S.A.

ABSTRACT

Premelting effects are common in silicates and have been mostly observed as significant heat capacity anomalies beginning 100 to 200 °C below congruent melting points. To assess the role of cation dynamics in this phenomenon, we collected nuclear magnetic resonance (NMR) spectra and relaxation time data to within 20 to 50 °C of the melting points of sodium metasilicate (Na₂SiO₃), which displays a large premelting effect, and isostructural lithium metasilicate (Li_2SiO_3), which displays little premelting. From ⁷Li NMR, Li^+ site hopping is clearly observed in Li_2SiO_3 by a partial averaging of the ⁷Li quadrupolar peak shape, requiring exchange among a few, ordered orientations of LiO_4 tetrahedra. From ²³Na NMR, Na⁺ site hopping in Na₂SiO₃ appears to involve a more liquid-like behavior, implying exchange among many sites with different orientations in a disordered fashion. For this phase, ²⁹Si spectra indicate that in an oxidizing environment, no liquid phase is present at 20 °C below the melting point, well within the calorimetric premelting regime. However, partial averaging of the low-temperature, biaxial chemical shift powder pattern (typical of Si sites in chain silicates) occurs, suggesting some kind of extensive, librational motion of SiO₄ tetrahedra that is possibly linked to rapid Na⁺ diffusion near the melting point. In contrast to the simple Li⁺ diffusion in Li₂SiO₃, this process may require considerable nonvibrational energy and may thus be related to the heat capacity anomaly just prior to melting.