Hartite from Bílina

Vladimír Bouška,^{1,*} Ivana Císařová,¹ Roman Skála,² Zdeněk Dvořák,³ Jaroslav Zelinka,¹ and Karel Žák²

¹Faculty of Science, Charles University, Albertov 6, CZ-128 43 Prague, Czech Republic
²Czech Geological Survey, Klárov 3/131, CZ-118 21 Prague 1, Czech Republic
³The Bílina Mines, The North Bohemian Mines Co., 5.kvetna str., CZ-418 29 Bílina, Czech Republic

Abstract

In the Bílina Mine (Czech Republic), a very chemically pure material corresponding to hartite was found as a product of distillation into the pelosiderite nodule during coalification of a lignite seam in the Miocene or later. The amount of the material available allowed characterizing this natural mineral equivalent of the hydrocarbon (+)-phyllocladane [16α (H)-phyllocladane] thoroughly.

Elementary analysis of hartite from Bílina gave C = 87.45 wt% and H = 12.55 wt%, which corresponds to the formula $C_{20}H_{34}$. The IR spectrum demonstrated the presence of gem-dimethyl groups (doublet δ_s CH₃ at 1369 and 1383 cm⁻¹). Other bands indicated the presence of methyl and methylene groups. NMR studies showed that the hydrocarbon (hartite) molecule contains four CH₃ groups, nine CH₂ groups, four CH groups, and three quaternary carbon atoms. The sample exhibits a well-defined melting point between 71 and 71.5 °C. Measurements of optical rotation gave [α]_D = +24.2° (CHCl₃, *c* = 0.7). Lattice parameters from single-crystal study measured at 293(2) K were *a* = 11.407 (1), *b* = 20.952 (2), *c* = 7.4060 (8) Å, α = 93.941 (9)°, β = 100.750 (8)°, and γ = 80.499 (9)°. The crystal system is triclinic with space group *P*I, *Z* = 4, *V* = 1713.8 (3) Å³. Densities are D_m = 1.04 g/cm³ and D_x = 1.064 g/cm³, respectively. Isotopic composition of C in hartite from Bílina gave δ^{13} C_(PDB) = -24.4(1) ‰, a common value for coal and organic sedimentary material derived from higher plants.