Tschörtnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany

H. Effenberger, G. Giester, W. Krause, And H.-J. Bernhardt

¹Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria
²Henriette-Lott-Weg 8, D-50354 Hürth, Germany

³Ruhr-Universität Bochum, Institut für Mineralogie, Universitätsstrasse 150, D-44780 Bochum, Germany

ABSTRACT

The new mineral tschörtnerite, ideally $Ca_4(K,Ca,Sr,Ba)_3Cu_3(OH)_8[Si_1,Al_1,O_{48}]\cdot xH_2O$, $x \ge 1$ 20, occurs as well-formed cubes up to a maximum size of 0.15 mm in a Ca-rich xenolith at the Bellberg volcano near Mayen, Eifel, Germany. The light blue, transparent crystals are optically isotropic, n = 1.504(2). Microprobe analysis (in weight percent) gave CaO 13.10, CuO 9.64, SrO 4.49, BaO 1.93, K₂O 1.37, Fe₂O₃ 0.30, Al₂O₃ 25.21, SiO₂ 30.25, H₂O (calc. by difference) 13.71. The empirical formula based on 48 O atoms within the $tetrahedral\ net\ is\ Ca_{5.60}Sr_{1.04}K_{0.70}Ba_{0.30}Cu_{2.90}Fe_{0.09}Al_{11.85}Si_{12.06}O_{48}(OH)_{8.44}\cdot 14.01H_2O.\ Tschörtnerite$ is cubic, space group $Fm\overline{3}m$ [a = 31.62(1) Å, V = 31614 Å³, Z = 16]. The density is $D_{\text{meas}} = 2.1 \text{ g/cm}^3$, $D_{\text{calc}} = 2.10 \text{ g/cm}^3$. Single-crystal X-ray investigations showed that tschörtnerite is a zeolite; the structure contains interconnection of double six-rings, double eight-rings, sodalite cages, truncated cubo-octahedra, and previously unknown 96-membered cages (tschörtnerite cage). A new structural unit is the [Cu₁₂(OH)₂₄]Ca₈O₂₄(H₂O)₈ cluster centered within the truncated cubo-octahedron. The cluster is formed by a rhombdodecahedron-like arrangement of corner connected CuO₄ squares, the eight CaO₇ polyhedra are branched. The sodalite cage houses Ca₄(OH)₄O₁₂ clusters of edge-sharing CaO₆ octahedra. Half-occupied (K,Ca,Sr,Ba) positions were located in the basal and top face of the double eight-rings, i.e., the border to the tschörtnerite cage. Within the large tschörtnerite cage only H₂O molecules were localized.