American Mineralogist, Volume 82, pages 79-87, 1997

Determination of the content and distribution of fixed ammonium in illite-smectite by X-ray diffraction: Application to North Sea illite-smectite

VICTOR A. DRITS,¹ HOLGER LINDGREEN,² AND ALFRED L. SALYN¹

¹Institute of Geology, Russian Academy of Science, Pyzhevsky per D.7, 109017 Moscow, Russia ²Clay Mineralogical Laboratory, Geological Survey of Denmark and Greenland, Thoravej 8, DK 2400 Copenhagen NV, Denmark

Abstract

A new X-ray diffraction method for the determination of the amount and distribution of fixed NH₄⁺ in illite-smectite has been developed. Illite-smectite was saturated with K⁺ and heated at 150 °C. The 002 and 005 reflections were recorded with steps of 0.01° 2 θ , and the experimental *d* values and the values for full-width at half-height (FWHH) were determined using a peak-profile–fitting procedure. Peak profiles were calculated with the NEWMOD program for illite structures having different amounts of NH₄⁺ and different patterns for the distribution of NH₄⁺ in interlayers. For Upper Jurassic illite-smectite from North Sea oil source rocks, the amount and the distribution of NH₄⁺ in illite interlayers were determined by comparing the experimental values for *d*₀₀₅ and FWHH with the values calculated for the selected illite structures. The amounts of NH₄⁺ determined in this manner correlate well with the amounts determined by an isotopic dilution method. The results demonstrate that these illite-smectite samples have K end-member illite and NH₄ endmember illite (tobelite) layers and that the illite layers formed during diagenesis and oil generation actually are tobelite layers.