A multi-faceted experimental study on the dynamic behavior of MgSiO₃ glass in the Earth's deep interior

YOUNG JAY RYU^{1,*}, YANBIN WANG¹, TONY YU¹, FIONA BONNET^{1,†}, ERAN GREENBERG^{1,‡}, Clemens Prescher², Vitali B. Prakapenka¹, Sergey Tkachev¹, Peter Eng¹, JOANNE E. STUBBS¹, Przemyslaw Dera³, Heather Watson^{4,}§, and Mark L. Rivers¹

¹Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, U.S.A. ²Institute of Earth and Environmental Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, D-79104, Germany ³Hawai'i Institute of Geophysics and Planetology, University of Hawai'i Mānoa, Hawai'i, Hawaii, 96822, U.S.A. ⁴Department of Physics and Astronomy, Union College, Schenectady, New York 12308, U.S.A.

ABSTRACT

Pressure-induced structural modifications in silicate melts play a crucial role in controlling dynamic processes in the deep interiors of the Earth and other planets. The correlation between structural and macroscopic properties of silicate liquids (densification, viscosity, chemical differentiation, etc.), however, remains poorly understood. Here we report the evolution of structural modifications and elastic properties of MgSiO₃ glass to pressures up to ~70 GPa using a combination of experimental techniques, including micro-confocal Raman spectroscopy, angle-dispersive X-ray scattering, and Brillouin spectroscopy in the diamond-anvil cell. Our combined data set provides consistent and complementary evidence of a series of pressure-induced structural modifications in MgSiO₃ glass at ~2, ~8, ~20, and ~40 GPa. Based on these results, a structural evolution model for MgSiO₃ glass is proposed. We also discuss the role of Mg-O component in MgSiO₃ and Mg₂SiO₄ glasses in controlling pressure-induced structural modifications and mechanical responses in these supercooled liquids.

Keywords: MgSiO₃ glass, high pressure, structural modification, Raman spectroscopy, Brillouin spectroscopy, X-ray scattering