American Mineralogist, Volume 107, pages 1254–1261, 2022

Density determination of liquid iron-nickel-sulfur at high pressure

SAORI I. KAWAGUCHI^{1,2,*,†}, GUILLAUME MORARD^{3,4}, YASUHIRO KUWAYAMA⁵, KEI HIROSE^{2,5}, NAOHISA HIRAO¹, AND YASUO OHISHI¹

¹Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan ²Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan ³Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d'Histoire Naturelle, UMR CNRS, 7590 Paris, France

⁴Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France ⁵Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

ABSTRACT

The density of liquid iron-nickel-sulfur (Fe_{46.5}Ni_{28.5}S₂₅) alloy was determined at pressures up to 74 GPa and an average temperature of 3400 K via pair distribution function (PDF) analysis of synchrotron X-ray diffraction (XRD) data obtained using laser-heated diamond-anvil cells. The determined density of liquid Fe_{46.5}Ni_{28.5}S₂₅ at 74 GPa and 3400 K is 8.03(35) g/cm³, 15% lower than that of pure liquid Fe. The obtained density data were fitted to a third-order Vinet equation of state (EoS), and the determined isothermal bulk modulus and its pressure derivative at 24.6 GPa are $K_{TPr} = 110.5(250)$ GPa and $K'_{TPr} = 7.2(25)$, respectively, with a fixed density of $r_{Pr} = 6.43$ g/cm³ at 24.6 GPa. The change in the atomic volume of Fe_{46.5}Ni_{28.5}S₂₅ upon melting was found to be ~10% at the melting temperature, a significantly larger value than that of pure Fe (~3%). Combined with the above EoS parameters and the thermal dependence reported in the literature, our data were extrapolated to the outer core conditions of the Earth. Assuming that S is the only light element and considering the range of suggested Ni content, we estimated a 5.3–6.6 wt% S content in the Earth's outer core.

Keywords: Liquid iron alloy, high pressure, Fe₃S, Earth's outer core; Physics and Chemistry of Earth's Deep Mantle and Core