Water in the crystal structure of CaSiO₃ perovskite Sang-Heon Shim^{1,*}, Andrew Chizmeshya², and Kurt Leinenweber³

¹School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, U.S.A. ²School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, U.S.A. ³Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, U.S.A.

ABSTRACT

While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO₃ perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H₂O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral $(Ca^{2+} \rightarrow 2H^{+})$ and octahedral $(Si^{4+} \rightarrow 4H^{+})$ substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO₃ perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO₃ perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a large distortion in the neighboring SiO₆ octahedra. Such distortion may be responsible for the non-cubic peak splittings observed in experiments on hydrous CaSiO₃ perovskite. Our calculated infrared spectra suggest that the observed broad OH modes in CaSiO₃ perovskite can result from the existence of multiples of H configurations in the phase. Combined with the recent experimental results, our study suggests that CaSiO₃ can be an important mineral phase to consider for the H₂O storage in the lower mantle.

Keywords: CaSiO₃ perovskite, water, mantle, first-principles calculation