Elasticity and high-pressure behavior of Mg₂Cr₂O₅ and CaTi₂O₄-type phases of magnesiochromite and chromite

SEAN R. SHIEH^{1,2,*}, TAUHID BELAL KHAN¹, ZHONGYING MI¹, MAURITZ VAN ZYL¹, RICARDO D. RODRIGUEZ¹, CLEMENS PRESCHER³, AND VITALI B. PRAKAPENKA³

¹Department of Earth Sciences, University of Western Ontario, London, Ontario N6G 2V4, Canada ²Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada ³Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, U.S.A.

ABSTRACT

In situ high-pressure and high-temperature X-ray diffraction studies on magnesiochromite, MgCr₂O₄, and a natural chromite, (Mg,Fe)(Al,Cr)₂O₄, using a laser-heated diamond-anvil cell technique were performed at pressures to ~45 GPa. Our results on MgCr₂O₄ at ~15 GPa showed temperature-induced dissociation of MgCr₂O₄ to Cr₂O₃+MgO below ~1500 K and formation of modified ludwigite (mLd)-type Mg₂Cr₂O₃+Cr₂O₃ above ~1500 K. Above 20 GPa, only a single phase with the CaTi₂O₄-type structure of MgCr₂O₄ was observed at 1400–2000 K. A second-order Birch-Murnaghan fit to pressure-volume data for the CaTi₂O₄-type phase of MgCr₂O₄ yields zero-pressure volume (V_0) = 264.4(8) Å³ and bulk modulus (K_0) = 185.4(4) GPa, and for the CaTi₂O₄-type structure of natural (Mg,Fe)(Al,Cr)₂O₄ yields V_0 = 261(1) Å³ and K_0 = 175.4(2) GPa. A second-order Birch-Murnaghan fit to pressure-volume data of mLd-type Mg₂Cr₂O₅ yields V_0 = 338.9(8) Å³ and K_0 = 186.5(6) GPa. The obtained high-pressure phase relations of chromite spinels can be used as an indicator for shock pressure in impact rocks and meteorites. The bulk moduli of the high-pressure phases of MgCr₂O₄ and FeCr₂O₄ can help develop a thermodynamic model for Mg and Fe end-member spinels in the upper mantle and transition zone.

Keywords: Magnesiochromite, chromite, CaTi₂O₄ phase, modified Ludwigite phase, equation of state