American Mineralogist, Volume 107, pages 336-342, 2022

Synthesis of calcium orthocarbonate, Ca₂CO₄-*Pnma* at *P*-*T* conditions of Earth's transition zone and lower mantle

Jannes Binck^{1,*,†}, Dominique Laniel², Lkhamsuren Bayarjargal¹, Saiana Khandarkhaeva³, Timofey Fedotenko², Andrey Aslandukov², Konstantin Glazyrin⁴, Victor Milman⁵, Stella Chariton⁶, Vitali B. Prakapenka⁶, Natalia Dubrovinskaia², Leonid Dubrovinsky³, and Björn Winkler¹

¹Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
²Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
³Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
⁴Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
⁵BIOVIA Dassault Systèmes, 334 Science Park, Cambridge CB4 0WN, U.K.
⁶Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, U.S.A.

Abstract

We show, by single-crystal diffraction studies in laser-heated diamond-anvil cells, that Ca_2CO_4 orthocarbonate, which contains CO_4^4 tetrahedra, can be formed already at ~20 GPa at ~1830 K, i.e., at much lower pressures than other carbonates with sp^3 -hybridized carbon. Ca_2CO_4 can also be formed at ~89 GPa and ~2500 K. This very broad *P*-*T* range suggests the possible existence of Ca_2CO_4 in the Earth's transition zone and in most of the lower mantle. Raman spectroscopy shows the typical bands associated with tetrahedral CO_4^4 -groups. DFT-theory based calculations reproduce the experimental Raman spectra and indicate that at least in the athermal limit the phase assemblage of $Ca_2CO_4 + 2SiO_2$ is more stable than $2CaSiO_3 + CO_2$ at high pressures.

Keywords: Carbonate, Ca₂CO₄, structure, X-ray diffraction, Raman spectroscopy, density functional theory; Volatile Elements in Differentiated Planetary Interiors