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MODELS FOR FITTING VOLUME-TEMPERATURE  DATA 

A key physical parameter for modelling the response of crystalline material as a function of 

the applied temperature is the volume (V) thermal expansion coefficient αV, defined as 

(1/V)*(∂V/∂T)P. The latter can be derived from the curve that describes V as f(T). Because such a 

derivation is model dependent, it is appropriate to consider what model is most suitable in fitting 

experimental V-T data.  

A fit to high temperature volume data should include a number of important features: 

(a) It should give a good fit to the data as judged by parameters such as χ2 or R2. Ideally, the

deviations of the fit should, on average, be less than the average of the experimental error. (b) It 

should accurately predict experimental data below and above the temperature measurement range, 

which commonly lies between room temperature and the highest temperature achieved by 

commercial heating systems, 900 °C or more. (c) It should be based on a physical model using 

variables that can be measured by other techniques, for example the bulk modulus as well as the 

Einstein and Debye temperatures, and produce output having physically sensible results. (d) It 

should neither over- or under-parameterize the data. For example, if V-T data allow a linear fit only, 

higher-order models can result in non-physical or meaningless extrapolation to higher or lower 

temperatures. Generally, the statistically best model requiring the fewest parameters should be 

utilized. 

In principle, a physical model is most desirable. Because thermal expansion is related to the 

vibrational energy of a crystal, the latter potentially provides information on the energetics of the 

substance. According to Wallace (1998) and  Knight and Price (2008), the energy of lattice 

vibrations (U) changes with volume as 

(1) V = V0 + U/K 
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where  is the Grüneisen parameter and K0 the bulk modulus at 0 K. The energy of lattice vibrations 

can be obtained through an Einstein model for the latter 

(2) U = 3NkBE/(eE/T-1)  

or a Debye model 

(3) U = 9NkBT(T/D)3         

where N is the number of atoms in the unit cell, kB the Boltzmann constant and E and D the 

Einstein and Debye temperatures, respectively, which are related to the period ω of the Einstein and 

Debye oscillators. 

 The Einstein and Debye models differ in the way they describe the vibrational spectrum 

(Wallace 1998). In the Einstein model the quantity k = 3NkBE/K0 may be refined as a single 

parameter, so that the equation for linear change of lattice energy with temperature becomes 

(4) V = V0 + k/(eE/T-1)  

The latter has just three refinable parameters V0, k and E, which have been utilized, for example, 

by Redhammer et al. (2010). Equation (4) assumes a linear relationship between volume and lattice 

energy, which is an approximation to the original power series expansion in the Mie-Grüneisen 

equation of state (Grüneisen 1912; Anderson et al. 1992). 

Different models have been proposed to account for a non-linear relationship between 

volume and lattice energy, including those proposed by Wallace (1998), Suzuki et al. (1979) and 

Kumar (2003), as discussed at length by Kroll et al. (2012). These models have been used for 

minerals, for example, in modelling data for synthetic richterite (Tribaudino et al. 2008a), 

plagioclase (Tribaudino et al. 2011) and olivine (Kroll et al. 2012). Although such models are 

typically referred to a temperature of absolute zero, for petrologic modelling involving temperatures 

far above 0 K, Holland and Powell (2011) proposed a scaled Einstein-like formulation for lattice 

energy in which room-temperature volume and thermal expansion can be refined for any condition. 

Here, relations of volume with temperature are explicitly written as  
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(5) V = V2981- α298K’E(eE/298-1)2/[(E/298)2eE/298)][1/(eE/T-1) - 1/(eE/298-1)]-1/K’  

(Tribaudino et al. 2011). Required parameters V298, α298, K’ and E in the latter are room-T volume, 

room-T thermal expansion coefficient, room-T first derivative of the bulk modulus, and Einstein 

temperature, respectively. A different, but equivalent, formulation has been used by Holland and 

Powell (2011) and implemented in the EosFit7c code of Angel et al. (2014), who showed 

substantial equivalence with the formulation according to the Kumar formalism proposed by Kroll 

et al. (2012). Just as for the Eosfit7 code, we shall refer to this as the "Kroll” equation for the 

remainder of this paper. 

A sensible refinement of one of the physical models requires data that accurately describe 

deviations from linear V-T behavior, which are most apparent at low temperature (Fig. 1). Indeed, 

either the lack of closely-spaced precise data above room T or the absence of such data below room 

T can result in significant analysis errors. This is due to the fact that parameters refined in physical 

models are highly correlated; without truly robust data, values for E and K’ cannot be reliably 

refined. In practice, however, one can estimate the Einstein temperature in eqn. (5) through 

tabulated room-temperature entropy data (e.g., Holland and Powell, 2011) as E = 10636/(S298/n + 

6.4), where n is the number of atoms in the chemical formula of the relevant substance. Moreover, 

values of K’ are generally available from experimental investigations at high pressure (P). V298 and 

α298, of course, can be obtained from experimental V-T data. It should be noted that for the 

description of V-T variation within an experimental range, the choices of E and K’ values are not 

critical (Angel at al. 2014).   

A different approach to data characterization utilizes empirical models. For the latter, 

equations simply describe V-T behavior without any assumption about physical parameters. 

Although these are more robust in giving a result unaffected by the choice of the starting 

parameters, they may be inappropriate to data or lack physical meaning. Various such models have 

been proposed by Berman (1988), Pawley et al. (1996), Fei (1995), and Salje et al. (1991), as 
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discussed by Angel et al. (2014). The simplest of these assumes that thermal expansion is constant 

with temperature: 

(6) ln(V/V0) = α(T-T0) 

In practice, thermal expansion and T0 obtained from eqn (6) are equivalent to one obtained by a 

linear fit between V/V0 and temperature (Angel et al. 2014). Thus, we shall refer to eqn. (6) as 

"linear." Indeed, straight-line V-T approximations are useful when only a limited number of data 

points are available, such as those of early pioneering papers on pyroxene thermal expansion by 

Kozu and Ueda (1933), Deganello (1973), and Cameron et al. (1973). Because changes in thermal 

expansion are relatively small at higher temperatures, the approximation of a fixed thermal 

expansion coefficient as f(T) is useful in cases where a more detailed analysis is not possible.  

A more complex, yet empirical, formulation for V-T data has been provided by Fei (1995):  

(7) V=V0 exp(a0(T-Tref)+1/2a1(T2- Tref
2)-a2(1/T-1/Tref)   

(Angel et al. 2014 from Fei 1995). The first derivative of this equation gives the thermal expansion 

coefficient at any temperature as   

(8)  αT = a0 +a1*T+a2/T2  

Successful determination of the a2 term in this model requires high-quality data. Inability to 

determine the a2 term results in linear α vs. T results. Such an approximation is found in the second-

order polynomial model of Berman (1988): 

(9) V/V0= 1+a1(T-T0)+a2(T-T0)2/2 

where the thermal expansion coefficient varies with T as 

(10) α = a1 + a2(T-T0) 

In order to model the non-linear behavior of thermal expansion, yet reduce the number of 

parameters to be refined, the first version of the widely used Holland and Powell (1998) 

thermodynamic data base alternatively proposed a single-parameter model, first introduced by 

Pawley et al. (1996): 

(11) V/V0= 1+a°(T-T0)+20a°(T-T0) 
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Here, thermal expansion at a given T is calculated as α = a°(1-10/T). This model, later discarded 

in the Holland and Powell (2011) database, was replaced by one based on physical quantities. A 

modified version of the model from Angel et al. (2014) was used by Pandolfo et al. (2015) to fit 

data for jadeite-diopside pyroxenes. 

 It should be noted that, even when empirical models successfully model the saturation of 

thermal expansion at relatively high T, they fail to accurately describe the variation of thermal 

expansion at low temperature, i.e., T < 100K (Angel et al. 2014). 

 

American Mineralogist: June 2021 Online Materials AM-21-67650 
HOVIS ET AL.: PYROXENE THERMAL EXPANSION




