Cr₂O₃ in corundum: Ultrahigh contents under reducing conditions

WILLIAM L. GRIFFIN^{1,*}, SARAH E.M. GAIN^{1,2}, MARTIN SAUNDERS², FERNANDO CÁMARA³, LUCA BINDI^{4,†}, DEBORAH SPARTÀ³, VERED TOLEDO⁵, AND SUZANNE Y. O'REILLY¹

¹ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Earth and Environmental Sciences, Macquarie University, New South Wales 2109, Australia

²Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Western Australia 6009, Australia ³Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Via Mangiagalli 34, I-20133 Milano, Italy ⁴Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Florence, Italy

⁵Shefa Gems Ltd., Netanya 4210602, Israel

ABSTRACT

Xenocrysts and xenoliths in Upper Cretaceous pyroclastics on Mount Carmel (northern Israel) represent a series of similar magma-fluid systems at different stages of their evolution, recording a continuous decrease in oxygen fugacity (f_{02}) as crystallization proceeded.

Corundum coexisting with Fe-Mg-Cr-Al spinels, other Fe-Mg-Al-Na oxides, and Fe-Ni alloys in apparent cumulates crystallized at f_{0_2} values near the iron-wüstite (IW) buffer ($f_{0_2} = IW\pm 1$) and is zoned from high-Cr cores to lower-Cr rims, consistent with fractional crystallization trends. The reconstructed parental melts of the cumulates are Al-Cr-Fe-Mg oxides with ca. 2 wt% SiO₂. Corundum in other possible cumulates that contain Cr-Fe (Fe 45 wt%) alloys has low-Cr cores and still lower-Cr rims. Corundum coexisting with Cr⁰ ($f_{0_2} = IW-5$) in some possible cumulates has low-Cr cores, but high-Cr rims (to >30% Cr₂O₃). These changes in zoning patterns reflect the strong decrease in the melting point of Cr₂O₃, relative to Al₂O₃, with decreasing f_{0_2} . The electron energy loss spectroscopy (EELS) analyses show that all Cr in corundum that coexists with Cr⁰ is present as Cr³⁺. This suggests that late in the evolution of these reduced melts, Cr²⁺ has disproportionated via the reaction $3Cr^{2+}$ (melt) $\rightarrow 2Cr^{3+}(Crn) + Cr^{0}$.

The most Cr-rich corundum crystallized together with β -alumina phases including NaAl₁₁O₁₇ (diaoyudaoite) and KAl₁₁O₁₇ (kahlenbergite) and β "-alumina phases; residual melts crystallized a range of (K,Mg)₂(Al,Cr)₁₀O₁₇ phases with the kahlenbergite structure. The parental melts of these assemblages appear to have been Al-Cr-K-Na-Mg oxides, which may be related to the Al-Cr-Fe-Mg oxide melts mentioned above, through fractional crystallization or liquid immiscibility.

These samples are less reduced (f_{02} from IW to IW-5) than the assemblages of the trapped silicate melts in the more abundant xenoliths of corundum aggregates ($f_{02} =$ IW-6 to IW-10). They could be considered to represent an earlier stage in the f_{02} evolution of an "ideal" Mt. Carmel magmatic system, in which mafic or syenitic magmas were fluxed by mantle-derived CH₄+H₂ fluids. This is a newly recognized step in the evolution of the Mt. Carmel assemblages and helps to understand element partitioning under highly reducing conditions.

Keywords: High-Cr ruby, ultra-reducing conditions, Mt. Carmel, mantle-derived methane, mantlederived hydrogen