Nonlinear effects of hydration on high-pressure sound velocities of rhyolitic glasses JESSE T. Gu^{1,†}, Suyu Fu¹, JAMES E. GARDNER¹, SHIGERU YAMASHITA², TAKUO OKUCHI^{2,‡}, AND JUNG-FU LIN^{1,*}

¹Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, U.S.A. ²Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan

ABSTRACT

Acoustic compressional and shear wave velocities ($V_{\rm P}$, $V_{\rm S}$) of anhydrous (AHRG) and hydrous rhyolitic glasses (HRG) containing 3.28 wt% (HRG-3) and 5.90 wt% (HRG-6) total water concentration (H₂O₁) have been measured using Brillouin light scattering (BLS) spectroscopy up to 3 GPa in a diamond-anvil cell at ambient temperature. In addition, Fourier-transform infrared (FTIR) spectroscopy was used to measure the speciation of H₂O in the glasses up to 3 GPa. At ambient pressure, HRG-3 contains 1.58 (6) wt% hydroxyl groups (OH⁻) and 1.70 (7) wt% molecular water (H_2O_m) while HRG-6 contains 1.67 (10) wt% OH⁻ and 4.23 (17) wt% H₂O_m where the numbers in parentheses are $\pm 1\sigma$. With increasing pressure, very little H₂O_m, if any, converts to OH⁻ within uncertainties in hydrous rhyolitic glasses such that HRG-6 contains much more H₂O_m than HRG-3 at all experimental pressures. We observe a nonlinear relationship between high-pressure sound velocities and H₂O₁, which is attributed to the distinct effects of each water species on acoustic velocities and elastic moduli of hydrous glasses. Near ambient pressure, depolymerization due to OH⁻ reduces $V_{\rm S}$ and G more than $V_{\rm P}$ and $K_{\rm S}$. $V_{\rm P}$ and $K_{\rm s}$ in both anhydrous and hydrous glasses decrease with increasing pressure up to ~1-2 GPa before increasing with pressure. Above $\sim 1-2$ GPa, V_P and K_S in both hydrous glasses converge with those in AHRG. In particular, $V_{\rm P}$ in HRG-6 crosses over and becomes higher than $V_{\rm P}$ in AHRG. HRG-6 displays lower V_s and G than HRG-3 near ambient pressure, but V_s and G in these glasses converge above ~2 GPa. Our results show that hydrous rhyolitic glasses with $\sim 2-4$ wt% H₂O_m can be as incompressible as their anhydrous counterpart above ~ 1.5 GPa. The nonlinear effects of hydration on high-pressure acoustic velocities and elastic moduli of rhyolitic glasses observed here may provide some insight into the behavior of hydrous silicate melts in felsic magma chambers at depth.

Keywords: Hydrous glass, sound velocity, elasticity, water, rhyolite, Brillouin light scattering spectroscopy, FTIR spectroscopy, high pressure, diamond-anvil cell