Recycled volatiles determine fertility of porphyry deposits in collisional settings of

BO XU^{1,2,*}, ZENG-QIAN HOU³, WILLIAM L. GRIFFIN², YONGJUN LU^{4,5}, ELENA BELOUSOVA², JI-FENG XU¹, AND SUZANNE Y. O'REILLY²

¹State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China ²ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Macquarie University, New South Wales 2109, Australia ³Chinese Academy of Geological Sciences, Beijing 100037, China

⁴Geological Survey of Western Australia, 100 Plain Street, East Perth, Western Australia 6004, Australia

⁵Centre for Exploration Targeting and CCFS, School of Earth Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia

ABSTRACT

An intensive study of the geochemical characteristics (including the volatile elements Cl and S) of apatite associated with porphyry deposits was undertaken to address the debate about the crust- or mantle-derivation of their copper and gold and to better understand the controls on the transport of metals in magmatic fluids in post-subduction settings. New geochemical data on apatite reveal parameters to discriminate mineralized porphyry systems across Iran and western China (Tibet and Yunnan), from coeval barren localities across this post-subduction metallogenic belt. Apatites in *fertile* porphyries have higher Cl and S concentrations (reflecting water-rich crystallization conditions) than those from coeval *barren* ones. Our new isotopic data also indicate these volatiles are likely derived from pre-enriched sub-continental lithospheric mantle, metasomatized by previous oceanic subduction. This study demonstrates that refertilization of suprasubduction lithospheric mantle during previous collision events is a prerequisite for forming post-subduction fertile porphyries, providing an evidence-based alternative to current ore-enrichment models.

Keywords: Collisional settings, in situ isotope, deposits, Tibet