Elucidating the natural–synthetic mismatch of Pb²⁺Te⁴⁺O₃: The redefinition of fairbankite to Pb²⁺₁₂(Te⁴⁺O₃)₁₁(SO₄)

Owen P. Missen^{1,2,*}, Michael S. Rumsey³, Stuart J. Mills¹, Matthias Weil^{4,†}, Jens Najorka⁵, John Spratt⁵, and Uwe Kolitsch^{6,7}

¹Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

²School of Earth, Atmosphere and Environment, Monash University, Clayton 3800, Victoria, Australia
³Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, England, U.K.
⁴Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Vienna, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
⁵Department of Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, England, U.K.
⁶Department of Mineralogy and Petrography, Natural History Museum, Burgring 7, A-1010 Vienna, Austria
⁷Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

ABSTRACT

For four decades fairbankite was reported to have the formula $Pb^{2+}(Te^{4+}O_3)$, but repeated attempts to isolate fairbankite crystals for structural determination found only the visually similar cerussite and, more rarely, anglesite. The crystal-structure determination of fairbankite using single-crystal X-ray diffraction, supported by electron microprobe analysis and X-ray powder diffraction on the type specimen, has shown that fairbankite contains essential S, along with Pb, Te, and O. The chemical formula of fairbankite has been revised to $Pb_{12}^{2}(Te^{4+}O_3)_{11}(SO_4)$. This change has been accepted by the IMA-CNMNC, Proposal 19-I. The crystal structure of fairbankite [space group P1 (no. 1); revised cell: a = 7.0205(3) Å, b = 10.6828(6) Å, c = 14.4916(8) Å, $\alpha = 75.161(5)^{\circ}$, $\beta = 81.571(4)^{\circ}$, $\gamma = 83.744(4)^{\circ}$, V = 1036.35(9) Å³, and Z = 1 is the first atomic arrangement known to contain a Te³⁺O⁶⁻ non-cyclic, finite building unit. Fairbankite has an average structure, formed from a 3D framework of Pb²⁺O_n polyhedra, $Te^{4+}O_n$ polyhedra, and SO₄ tetrahedra in a 12:11:1 ratio. The stereoactive lone pairs of the Pb²⁺ and Te⁴⁺ cations are oriented into void space within the structure. Fairbankite contains two mixed sites statistically occupied by Te^{4+} and S^{6+} in approximately 4:1 and 1:4 ratios. These two sites possess Te^{4+} in trigonal-pyramidal environment and S^{6+} in tetrahedral environment (with an additional O site to create tetrahedral SO₄ shape for the S-dominant site). Six of the 10 fully occupied Te^{4+} sites have Te^{4+} in trigonal-pyramidal environment, while four have Te^{4+} at the center of highly distorted $Te^{4+}O_4$ disphenoids. The disphenoids allow for the creation of two dimeric $Te_{2}^{+}O_{4}^{+}$ units in addition to the $Te_{3}^{4+}O_{0}^{6-}$ trimeric unit, which contains two disphenoids. All linkage between disphenoids and trigonal pyramids is via corner-linking. Secondary connectivity is via long Te-O and Pb-O bonds.

Keywords: Lead tellurite, fairbankite, redefinition, crystal structure, tellurium oxysalt, average structure; Tombstone, Arizona, U.S.A.