Jasonsmithite, a new phosphate mineral with a complex microporous framework, from the Foote mine, North Carolina, U.S.A.

ANTHONY R. KAMPF^{1,*,†}, AARON J. CELESTIAN¹, AND BARBARA P. NASH²

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ²Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

ABSTRACT

Jasonsmithite (IMA2019-121), Mn_4^2 ZnAl(PO₄)₄(OH)(H₂O)₇·3.5H₂O, is a pegmatite-phosphate mineral from the Foote Lithium Company mine, Kings Mountain district, Cleveland County, North Carolina, U.S.A. It is interpreted as having formed by late-stage, low-temperature hydrothermal alteration. Crystals are colorless to light brown, slightly flattened prisms to about 1 mm in length with wedge-shaped terminations. The mineral is transparent with vitreous luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and perfect {001} cleavage. The density is 2.63(2) g/cm³. Jasonsmithite is biaxial (-), with $\alpha = 1.561(2)$, $\beta = 1.580(2)$, $\gamma = 1.581(2)$, measured in white light. The 2*V* is 25(5)° and dispersion is r < v moderate. The optical orientation is $Y = \mathbf{b}$, $X^{\wedge} \mathbf{c} = 18^{\circ}$ in obtuse β . The Raman spectrum is dominated by vibrational modes of PO₄ and ZnO₄ tetrahedra, AlO₆ and MnO₆ octahedra, and OH groups. Electron microprobe analyses gave the empirical formula $(Mn_{3.09}Fe_{0.87})_{\Sigma 3.96}Zn_{1.05}Al_{0.98}(PO_4)_4(OH)(H_2O)_7 \cdot 3.5H_2O$. The mineral is monoclinic, $P2_1/c$, a = 8.5822(3), b = 13.1770(6), c = 20.3040(14) Å, $\beta = 98.485(7)^{\circ}, V = 2271.0(2)$ Å³, and Z = 4. The structure ($R_1 = 1000$ 0.0443 for 3685 I>2 σ I reflections) contains zigzag chains of edge-sharing MnO₆ octahedra that cornerlink to adjacent chains and to PO_4 tetrahedra to form sheets, which are decorated by ZnO_4 tetrahedra. The sheets are linked to one another via dimers of AlO_6 octahedra, forming a framework with large channels containing H₂O groups. With H₂O groups removed, the framework has a void space of 70.2% per unit cell, and a framework density of 14.5 polyhedral atoms/1000 Å³, which would place jasonsmithite among the most porous minerals.

Keywords: Jasonsmithite, new mineral, phosphate, microporous framework structure, Raman spectroscopy, Foote mine, Kings Mountain, North Carolina, U.S.A.; Microporous Materials: Crystal-Chemistry, Properties, and Utilizations