Effect of water on carbonate-silicate liquid immiscibility in the system KAlSi₃O₈-CaMgSi₂O₆-NaAlSi₂O₆-CaMg(CO₃)₂ at 6 GPa: Implications for diamond-forming melts

ANTON SHATSKIY^{1,2,3,*,‡}, ANTON V. AREFIEV^{1,2,3}, IVAN V. PODBORODNIKOV^{1,2}, AND KONSTANTIN D. LITASOV^{3,4,†}

¹Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Novosibirsk 630090, Russia ²Novosibirsk State University, Novosibirsk 630090, Russia

³Vereshchagin Institute for High Pressure Physics, Russian Academy of Science, Troitsk, Moscow, 108840, Russia ⁴Fersman Mineralogical Museum, Russian Academy of Science, Moscow, 115162, Russia

ABSTRACT

To clarify the effect of water on carbonate-silicate liquid immiscibility in the diamond stability field, we performed experiments in the system KAlSi₃O₈-CaMgSi₂O₆-NaAlSi₂O₆-CaMg(CO₃)₂ under nominally dry and hydrous conditions by adding 1.5 wt% H₂O at a pressure of 6 GPa and temperatures of 1000 to 1500 °C. Both systems start to melt at 1050-1100 °C. Under anhydrous condition the melting occurs via the following reaction: $6KAlSi_3O_8$ (K-feldspar) + $6CaMg(CO_3)_2$ (dolomite) $= 2(Ca_n,Mg_{1-n})_3Al_2Si_3O_{12}$ (garnet) $+ Al_2SiO_5$ (kyanite) $+ 11SiO_2$ (coesite) $+ 3 K_2(Ca_{1-n},Mg_n)_2(CO_3)_3$ (carbonatitic melt) + $3CO_2$ (fluid and/or liquid), where n ~ 0.3-0.4. The carbonatitic melt has the following composition 38(K_{0.92}Na_{0.08})₂CO₃·62Ca_{0.62}Mg_{0.38}CO₃. A second immiscible silicic melt containing (in wt%, volatile free) $SiO_2 = 68.8$, $Al_2O_3 = 12.6$, CaO = 3.7, MgO = 2.4, $Na_2O = 1.1$, and $K_2O = 1.1$ 11.3 appears at 1250 °C. Both melts remain stable up to 1500 °C and coexist with the clinopyroxene \pm garnet \pm coesite residue. In the presence of water stored away in phengite, the melting begins with silicic melt, which contains (in wt%, volatile free) $SiO_2 = 61.4$, $Al_2O_3 = 15.3$, CaO = 4.8, MgO = 3.0, Na₂O = 2.2, and $K_2O = 13.3$, and coexists with phengite, dolomite, clinopyroxene, and coesite. The phengite + dolomite assemblage remains to 1100 °C and disappears at 1200 °C producing two immiscible melts carbonatitic with approximate composition, 19(K_{0.89}Na_{0.11})₂CO₃,81Ca_{0.57}Mg_{0.43}CO₃, and silicic containing (in wt%, volatile free) $SiO_2 = 63.3$, $Al_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, CaO = 4.5, MgO = 3.0, $Na_2O_3 = 15.6$, $= 2.0, K_2O = 11.6$. The present results imply that partial melting of continental material subducted to a depth of 200 km can yield simultaneous formation of two immiscible melts, K-dolomitic and K-aluminosilicate. Under dry conditions, carbonatitic melt appears earlier (at a lower temperature). Given the low density and high mobility of this melt, it must rapidly percolate upward, leaving a refractory eclogite-like residue and leaving no chance for the formation of a second aluminosilicate melt. However, under hydrous conditions silicate melt appears earlier than carbonatitic melt, leaving a phengite- and dolomite-bearing residue, which finally yields the formation of two immiscible silicic and carbonatitic melts. The compositions of these melts fall in the compositional range of carbonatitic and silicic high-density fluids (HDFs) in diamonds worldwide. Thus, we suggest that the presence of water is a necessary requirement for the formation of immiscible HDFs inclusions in diamonds, and this suggestion is strongly supported by natural data from HDFs.

Keywords: Carbonate-silicate liquid immiscibility, K-feldspar, phengite, carbonated pelites, highdensity fluids, diamond formation, high-pressure experiment, Earth's upper mantle; New Advances in Subduction Zone Magma Genesis