American Mineralogist, Volume 105, pages 1656–1661, 2020

A new occurrence of corundum in eucrite and its significance

JIE-YA LI¹, AI-CHENG ZHANG^{1,2,*}, NAOYA SAKAMOTO³, HISAYOSHI YURIMOTO^{3,4,5}, AND LI-XIN GU⁶

¹State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023 China
²CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
³Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo 010-0021, Japan
⁴Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japa
⁵Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa 252-5210, Japan
⁶Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

The diversity of lithologies is an important proxy of internal evolution in differentiated planets and asteroids. The major lithologies in Vesta, based on the howardite-eucrite-diogenite clan meteorites, include basalt, gabbro, noritic orthopyroxenite, orthopyroxenite, dunite, harzburgite, and dacite. No other lithology has been reported up to date. In this study, we report a new occurrence of corundum in eucrite meteorite Northwest Africa (NWA) 8647. Three-dimensional petrographic observations reveal that the corundum grain occurs as a mineral inclusion in a highly deformed pyroxene fragment. The texture indicates that the corundum is not a contaminant. The corundum-associated pyroxenes have Fe-Mn compositions consistent with typical pyroxenes from howardite-eucrite-diogenite meteorites. We suggest that the corundum grain could be a xenocryst incorporated during the ascent of a basaltic magma. The results might indicate the presence of an Al-rich, Si-poor region, probably lithology in the interior of Vesta, implying that the evolution and internal structure should be much more complex than previously thought.

Keywords: Corundum, Northwest Africa 8647, Al-rich lithology, eucrite, Vesta