Letter

Si-rich Mg-sursassite Mg₄Al₅Si₇O₂₃(OH)₅ with octahedrally coordinated Si: A new ultrahigh-pressure hydrous phase

LUCA BINDI^{1,2,*}, MARK D. WELCH³, ALEKSANDRA A. BENDELIANI^{4,5}, AND ANDREY V. BOBROV^{4,5,6}

¹Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy ²C.N.R., Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy

³Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

⁴Geological Faculty, Moscow State University, Moscow 119991, Russia

⁵Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow 119991, Russia ⁶Korzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow oblast 142432, Russia

ABSTRACT

The crystal structure of a new high-pressure hydrous phase, Si-rich Mg-sursassite, of ideal composition Mg₄Al₅Si₇O₂₃(OH)₅, that was produced by sub-solidus reaction at 24 GPa and 1400 °C in an experiment using a model sedimentary bulk composition, has been determined by single-crystal X-ray diffraction. The phase was found to be topologically identical to Mg-sursassite, Mg₅Al₅Si₆O₂₁(OH)₇, and has space group *P*2₁/*m* and lattice parameters *a* = 8.4222(7), *b* = 5.5812(3), *c* = 9.4055(9) Å, β = 106.793(8)°, *V* = 423.26(6) Å³, and *Z* = 1. The empirical formula determined by electron microprobe analysis of the same crystal as was used in the X-ray experiment is [Mg_{3.93(3)}Fe_{0.03(1)}]_{23.96}[Al_{4.98(3)}Cr_{0.04(1)}]_{25.02} Si_{7.02(4)}O₂₃(OH)₅, with hydroxyl content implied by the crystal-structure analysis. The most significant aspect of the structure of Si-rich Mg-sursassite is the presence of octahedrally coordinated Si. Its structural formula is ^{M1,VII}Mg₂^{M2,VI}Mg₂^{2+M3,VI}(Al_{0.5}Si_{0.5)2}^{M4,VI}Al₂^{M5,VI}Al₂^{T1,IV}Si₂^{T2,IV}Si₂^{T3,IV}Si₂O₂₃(OH)₅. Si-rich Mg-sursassite joins the group of hydrous ultrahigh-pressure phases with octahedrally coordinated Si that have been discovered by experiment, and that may play a significant role in the distribution and hosting of water in the deep mantle at subduction zones. The reactions defining the stability of Si-rich Mg-sursassite are unknown, but are likely to be fundamentally different from those of Mg-sursassite, and involve other ultrahigh-pressure dense structures such as phase D, rather than phase A.

Keywords: Mg-sursassite, hydrous dense magnesium silicate, synthesis, microprobe analysis, X-ray diffraction, crystal structure