Mg diffusion in forsterite from 1250–1600 °C

MICHAEL C. JOLLANDS^{1,2,*}, IRINA ZHUKOVA^{1,3}, HUGH ST.C. O'NEILL¹, AND JÖRG HERMANN^{1,4}

¹Research School of Earth Sciences, Australian National University, 142 Mills Road, ACT 0200, Australia

²Institute of Earth Sciences, Géopolis Building, University of Lausanne, 1015 Lausanne, Switzerland

³State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan),

388 Lumo Rd, Hongshan, Wuhan, Hubei, China 430074

⁴Institute of Geology, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland

ABSTRACT

²⁶Mg tracer diffusion coefficients were determined in single crystals of pure synthetic forsterite (Mg₂SiO₄). Isotopically enriched powder sources both acted as the ²⁶Mg source and buffered the activities of silica (a_{SiO_2}) at forsterite + protoenstatite (Mg₂Si₂O₆) (high a_{SiO_2}) and forsterite + periclase (MgO) (low a_{SiO_2}). Experiments were conducted at atmospheric pressure between 1250 and 1600 °C, and at oxygen fugacities (f_{O_2} S) between 10⁻¹² bars (CO-CO₂ mix) and 10^{-0.7} bars (air). The resulting diffusion profiles were measured along the three principal crystallographic axes (a, b, and c; ||[100], ||[010], ||[010]) using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS), with a quadrupole mass spectrometer. These measurements were corroborated by ion microprobe using the sensitive high resolution ion microprobe-reverse geometry (SHRIMP-RG) instrument.

Mg tracer diffusion is anisotropic, with $D_{[001]} > D_{[100]} > D_{[100]}$, the difference in diffusion coefficients varying by about one order of magnitude at a given temperature with crystallographic orientation. Diffusion is faster in protoenstatite-buffered than periclase-buffered conditions, again with around one order of magnitude difference in diffusivity between buffering conditions. There is no apparent effect of f_{02} on diffusion. A global fit to all data, including data from Chakraborty et al. (1994) and Morioka (1981) yields the relationship:

$$\log_{10} D = \log_{10} D_0 (m^2 s^{-1}) + 0.61 (\pm 0.03) \log_{10} a_{\rm SiO_2} + \frac{-359 (\pm 10) \text{kJ/mol}}{2.303 \text{R}T}$$

where $\log_{10}D_0$ is -3.15 (±0.08), -3.61 (±0.02), and -4.01 (±0.05) m² s⁻¹ for the [001], [010], and [100] directions, respectively (1 s.d.). The LA-ICP-MS technique reproduces diffusion coefficients determined by SHRIMP-RG, albeit with slightly different absolute values of isotope ratios. This shows that LA-ICP-MS, which is both accessible and rapid, is a robust analytical method for such tracer diffusion studies.

Keywords: Diffusion, olivine, forsterite, magnesium, experimental petrology