Static compression of Fe₄N to 77 GPa and its implications for nitrogen storage in the deep Earth

HELENE BRETON¹, TETSUYA KOMABAYASHI^{2,*,†}, SAMUEL THOMPSON², NICOLA POTTS², CHRISTOPHER MCGUIRE², SHO SUEHIRO³, SIMONE ANZELLINI⁴, AND YASUO OHISHI⁵

¹School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh EH9 3FE, U.K. Orcid 0000-0002-1106-1592 ²School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh EH9 3FE, U.K.

³Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan

⁴Diamond Light Source Ltd., Diamond House, Science & Innovation Campus, Didcot, OX11 0DE, U.K. ⁵SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

ABSTRACT

Compression and decompression experiments on face-centered cubic (fcc) γ' -Fe₄N to 77 GPa at room temperature were conducted in a diamond-anvil cell with in situ X-ray diffraction (XRD) to examine its stability under high pressure. In the investigated pressure range, γ' -Fe₄N did not show any structural transitions. However, a peak broadening was observed in the XRD patterns above 60 GPa. The obtained pressure-volume data to 60 GPa were fitted to the third-order Birch-Murnaghan equation of state (EoS), which yielded the following elastic parameters: $K_0 = 169$ (6) GPa, K' = 4.1 (4), with a fixed $V_0 = 54.95$ Å at 1 bar. A quantitative Schreinemakers' web was obtained at 15-60 GPa and 300-1600 K by combining the EoS for γ' -Fe₄N with reported phase stability data at low pressures. The web indicates the existence of an invariant point at 41 GPa and 1000 K where γ' -Fe₄N, hexagonal closed-packed (hcp) ε -Fe₇N₃, double hexagonal closed-packed β -Fe₇N₃, and hcp Fe phases are stable. From the invariant point, a reaction γ' - $Fe_4N = \beta - Fe_7N_3 + hcp$ Fe originates toward the high-pressure side, which determines the high-pressure stability of γ' -Fe₄N at 56 GPa and 300 K. Therefore, the γ' -Fe₄N phase observed in the experiments beyond this pressure must be metastable. The obtained results support the existing idea that β -Fe₃N₃ would be the most nitrogen-rich iron compound under core conditions. An iron carbonitride $Fe_7(C,N)_3$ found as a mantle-derived diamond inclusion implies that β -Fe₇N₃ and Fe₇C₃ may form a continuous solid solution in the mantle deeper than 1000 km depth. Diamond formation may be related to the presence of fluids in the mantle, and dehydration reactions of high-pressure hydrous phase D might have supplied free fluids in the mantle at depths greater than 1000 km. As such, the existence of $Fe_7(C.N)_3$ in diamond can be an indicator of water transportation to the deep mantle.

Keywords: Iron nitrides, Earth's core, equation of state, diamond-anvil cell, in situ X-ray diffraction, high pressure; Physics and Chemistry of Earth's Deep Mantle and Core