Sound velocity of neon at high pressures and temperatures by Brillouin scattering

WEI WEI¹, XINYANG LI¹, NINGYU SUN¹, SERGEY N. TKACHEV², AND ZHU MAO^{1,3,*}

¹Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ²Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois, U.S.A.

³CAS Center for Excellence in Comparative Planetology, China

ABSTRACT

In this study, we have determined the combined effect of pressure and temperature on the compressional-wave velocity (V_P) of Ne up to 53 GPa and 1100 K using Brillouin scattering in externally heated diamond-anvil cells. The phase transition from the supercritical fluid to solid phase was observed to cause a 10.5–11% jump in V_P , and the magnitude in the V_P contrast across the phase transition increases with temperature. In addition, we have observed an abnormal reduced increase rate of V_P with pressure in the supercritical Ne fluid at both 800 and 1100 K before the transition to the solid phase. V_P of the solid Ne exhibits a nonlinear increase with pressure at all the investigated temperatures. The elevating temperature dramatically decreases at higher pressures. At 20 GPa, increasing temperature by 100 K can lower the V_P of Ne by 2.4%. Yet elevating temperature by 100 K can only reduce the V_P by 0.4% at 50 GPa. We further compare V_P of Ne to that of other rare gases, including Ar, Kr, and Xe. At 300 K, V_P of Ne shows a stronger dependence on pressure than both Kr and Xe. Moreover, increasing temperature can produce a greater reduction in V_P of Ne to solid Pa both Kr and Xe. Our measured V_P of Ne is also useful for understanding the velocity structure of giant planets, such as Jupiter.

Keywords: Ne, sound velocity, high pressure and temperature, Brillouin scattering, rare gases