Chenmingite, FeCr₂O₄ in the CaFe₂O₄-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite

CHI MA^{1,*}, OLIVER TSCHAUNER², JOHN R. BECKETT¹, YANG LIU³, ERAN GREENBERG⁴, AND VITALI B. PRAKAPENKA⁴

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
²Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, U.S.A.
³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, U.S.A.
⁴GSECARS, University of Chicago, Argonne National Laboratory, Chicago, Illinois 60637, U.S.A.

ABSTRACT

Chenmingite (FeCr₂O₄; IMA 2017-036) is a high-pressure mineral, occurring as micrometer- to submicrometer-sized lamellae within precursor chromite grains along with xieite and Fe,Cr-rich ulvöspinel next to shock-induced melt pockets, from the Tissint martian meteorite. The composition of type chemmingite by electron probe analysis shows an empirical formula of $(Fe_{0.75}^{2+}Mg_{0.23}Mn_{0.02})$ $(Cr_{1.60}Al_{0.29}Fe_{0.06}^{3+}Fe_{0.04}^{2+}Ti_{0.02})_{\Sigma 2.01}O_4$. The general and end-member formulas are $(Fe,Mg)(Cr,Al)_2O_4$ and FeCr₂O₄. Synchrotron X-ray diffraction reveals that chemmingite has an orthorhombic *Pnma* CaFe₂O₄-type (CF) structure with unit-cell dimensions: a = 9.715(6) Å, b = 2.87(1) Å, c = 9.49(7) Å, V = 264.6(4) Å³, and Z = 4. Both chemmingite and xieite formed by solid-state transformation of precursor chromite under high pressure and high temperature during the Tissint impact event on Mars. The xieite regions are always in contact with melt pockets, whereas chemmingite lamellae only occur within chromite, a few micrometers away from the melt pockets. This arrangement suggests that chemmingite formed under similar pressures as xieite but at lower temperatures, in agreement with experimental studies.

Keywords: Chenmingite, FeCr₂O₄, high-pressure mineral, shock-induced phase, Tissint martian meteorite, shergottite