LETTER

The stability of Fe₅O₆ and Fe₄O₅ at high pressure and temperature

KOUTARO HIKOSAKA^{1,*,†}, RYOSUKE SINMYO¹, KEI HIROSE^{1,2}, TAKAYUKI ISHII³, AND YASUO OHISHI⁴

¹Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan ²Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan ³Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany. Orcid 0000-0002-1494-2141 ⁴Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Hyogo 679-5198, Japan

ABSTRACT

The oxygen fugacity in the interior of the Earth is largely controlled by iron-bearing minerals. Recent studies have reported various iron oxides with chemical compositions between FeO and Fe₃O₄ above ~10 GPa. However, the stabilities of these high-pressure iron oxides remain mostly uninvestigated. In this study, we performed in situ X-ray diffraction (XRD) measurements in a laser-heated diamond-anvil cell (DAC) to determine the phase relations in both Fe₃O₆ and Fe₄O₅ bulk compositions to 61 GPa and to 2720 K. The results show that Fe₃O₆ is a high-temperature phase stable above 1600 K and ~10 GPa, while FeO + Fe₄O₅ are formed at relatively low temperatures. We observed the decomposition of Fe₅O₆ into 2FeO + Fe₃O₄ above 38 GPa and the decomposition of Fe₄O₅ into FeO + h-Fe₃O₄ at a similar pressure range. The coexistence of FeO and Fe₃O₄ indicates that none of the recently discovered compounds between FeO and Fe₃O₄ (i.e., Fe₅O₆, Fe₉O₁₁, Fe₄O₅, and Fe₇O₉) are formed beyond ~40 GPa at 1800 K, corresponding to conditions in the shallow lower mantle. Additionally, as some superdeep diamonds have genetic links with these high-pressure iron oxides, our results give constraints on pressure and temperature conditions of their formation.

Keywords: Iron oxide, diamond-anvil cell, high pressure, Fe₄O₅, Fe₅O₆; Volatile Elements in Differentiated Planetary Interiors