Compressional behavior and spin state of δ -(Al,Fe)OOH at high pressures

ITARU OHIRA^{1,*}, JENNIFER M. JACKSON², NATALIA V. SOLOMATOVA^{2,†}, WOLFGANG STURHAHN², GREGORY J. FINKELSTEIN^{2,}[‡], SEIJI KAMADA^{1,3}, TAKAAKI KAWAZOE^{4,5}, FUMIYA MAEDA¹, NAOHISA HIRAO⁶, SATOSHI NAKANO⁷, THOMAS S. TOELLNER⁸, AKIO SUZUKI¹, AND EIJI OHTANI¹

¹Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

²Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, U.S.A.

³Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan

⁴Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95440 Germany

⁵Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ⁶Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan

⁷National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

⁸Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

Hydrogen transport from the surface to the deep interior and distribution in the mantle are important in the evolution and dynamics of the Earth. An aluminum oxy-hydroxide, δ-AlOOH, might influence hydrogen transport in the deep mantle because of its high stability extending to lower mantle conditions. The compressional behavior and spin states of δ -(Al,Fe³⁺)OOH phases were investigated with synchrotron X-ray diffraction and Mössbauer spectroscopy under high pressure and room temperature. Pressure-volume (*P-V*) profiles of the δ -(Al_{0.908(9)}⁵⁷Fe_{0.045(1)})OOH_{1.14(3)} [Fe/(Al+Fe) = 0.047(10), δ -Fe5] and the δ -(Al_{0.832(5)}⁵⁷Fe_{0.117(1)})OOH_{1.15(3)} [Fe/(Al+Fe) = 0.123(2), δ -Fe12] show that these hydrous phases undergo two distinct structural transitions involving changes in hydrogen bonding environments and a high- to low-spin crossover in Fe^{3+} . A change of axial compressibility accompanied by a transition from an ordered $(P2_1nm)$ to disordered hydrogen bond (Pnnm) occurs near 10 GPa for both δ -Fe5 and δ -Fe12 samples. Through this transition, the crystallographic a and b axes become stiffer, whereas the c axis does not show such a change, as observed in pure δ -AlOOH. A volume collapse due to a transition from high- to low-spin states in the Fe³⁺ ions is complete below 32–40 GPa in δ -Fe5 and δ -Fe12. which is ~ 10 GPa lower than that reported for pure ϵ -FeOOH. Evaluation of the Mössbauer spectra of δ -(Al_{0.824(10)}⁵⁷Fe_{0.126(4)})OOH_{1.15(4)} [Fe/(Al+Fe) = 0.133(3), \delta-Fe13] also indicate a spin transition between 32-45 GPa. Phases in the δ -(Al,Fe)OOH solid solution with similar iron concentrations as those studied here could cause an anomalously high ρ/v_{ϕ} ratio (bulk sound velocity, defined as $\sqrt{K/\rho}$) at depths corresponding to the spin crossover region (~900 to ~1000 km depth), whereas outside the spin crossover region a low ρ/v_{ϕ} anomaly would be expected. These results suggest that the δ -(Al,Fe)OOH solid solution may play an important role in understanding the heterogeneous structure of the deep Earth.

Keywords: δ-AlOOH, δ-(Al,Fe)OOH, hydrous minerals, high-pressure, X-ray diffraction, Mössbauer spectroscopy, diamond-anvil cell, synchrotron, water transport in the deep mantle