American Mineralogist, Volume 104, pages 1213-1216, 2019

LETTER

A new (Mg_{0.5}Fe³⁺_{0.5})(Si_{0.5}Al³⁺_{0.5})O₃ LiNbO₃-type phase synthesized at lower mantle conditions

ZHAODONG LIU^{1,2,*}, LEONID DUBROVINSKY¹, CATHERINE MCCAMMON¹, SERGEY V. OVSYANNIKOV¹, IULIIA KOEMETS¹, LUYAO CHEN², QI CUI³, NA SU³, JINGUANG CHENG^{3,4}, TIAN CUI², BINGBING LIU², AND TOMOO KATSURA^{1,5}

¹Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany ²State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P.R. China ³Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China ⁴Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P.R. China ⁵Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, P.R. China

ABSTRACT

A new $(Mg_{0.5}Fe_{0.5}^{3+})(Si_{0.5}Al_{0.5}^{3+})O_3$ LiNbO₃-type phase was synthesized at 27 GPa and 2000 K under highly oxidized conditions using an advanced multi-anvil apparatus. Single crystals for this phase are 0.2–0.3 mm in dimension and maroon in color. They crystallize in a noncentrosymmetric structure with space group *R*3*c* and lattice parameters of a = b = 4.8720(6) Å, c = 12.898(2) Å, and V = 265.14(8) Å³. Fe³⁺ and Al³⁺ cations substitute into *A* (Mg²⁺) and *B* (Si⁴⁺) sites through charge-coupled substitution mechanism, respectively. The distortion of BO_6 ($B = Si_{0.5}Al_{0.5}^{3+}$) octahedra is 1.6 times higher than that of AO₆ (A = Mg_{0.5}Fe_{0.5}^{3+}) octahedra. This phase is probably recovered from bridgmanite at lower-mantle conditions by a diffusionless transition because of the displacement of *A* cations and distortion of *B*O₆ octahedra on releasing pressure. Bridgmanite can thus contain the FeAlO₃ component (50 mol%) beyond previously reported solubility limit (37 mol%). The present study shows that the Earth's most abundant elements form a new Fe³⁺- and Al³⁺-rich LiNbO₃-type compound from bridgmanite at lower mantle conditions. This new compound provides a new insight into the complicated crystal chemistry of LiNbO₃-type phase/ bridgmanite and constrains the pressure and temperature conditions for shocked meteorites.

Keywords: LiNbO₃-type, single crystals, bridgmanite, crystal chemistry, lower mantle