Pressure-induced velocity softening in natural orthopyroxene at mantle temperature

SIHENG WANG^{1,*}, TING CHEN¹, NAO CAI², XINTONG QI¹, ADRIAN FIEGE³, ROBERT C. LIEBERMANN^{1,2}, AND BAOSHENG LI^{1,2}

¹Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, U.S.A.

²Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, U.S.A.

³Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York 10024, U.S.A.

ABSTRACT

In this study, we have measured the compressional and shear wave velocities of $(Mg_{1.77}Fe_{0.22}Ca_{0.01})$ Si₂O₆ natural orthopyroxene up to 13.5 GPa and 873 K using ultrasonic interferometry in conjunction with in situ synchrotron X-ray diffraction and imaging techniques. Previous acoustic experiments on orthoenstatite (OEn) MgSiO₃ indicated that both compressional and shear velocities (V_P and V_S) of OEn undergo continuous velocity softening above 9 GPa at room temperature, which has been attributed to the phase transition from OEn to the metastable, high-pressure clinoenstatite HPCEn2. For the first time, our results suggest that pressure-induced velocity softening can occur in natural orthopyroxene at high-temperature conditions relevant to the Earth's cold subduction zones. Estimates of the impedance and velocity contrasts between orthopyroxene (Opx) and high-pressure clinopyroxene (HPCpx) have been calculated, and the possibility of this phase transformation being a plausible candidate for seismic X-discontinuities at depth around 250–350 km is re-evaluated.

Keywords: Orthopyroxene, velocity softening, high pressure and high temperature, ultrasonic interferometry