Compressibility of two Na-rich clinopyroxenes: A synchrotron single-crystal X-ray diffraction study

EKATERINA A. MATROSOVA^{1,*}, LEYLA ISMAILOVA², ANDREY V. BOBROV^{1,3,4}, ELENA BYKOVA⁵, MAXIM BYKOV⁶, KONSTANTIN GLAZYRIN⁵, LUCA BINDI^{7,8}, SERGEY V. OVSYANNIKOV⁶, SERGEY M. AKSENOV^{9,10}, DMITRY YU. PUSHCHAROVSKY³, AND LEONID DUBROVINSKY⁶

¹Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, 119991, Russia
²Kolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3, Moscow, 143026, Russia
³Geological Faculty, Moscow State University, Moscow, 119991, Russia
⁴Institute of Experimental Mineralogy of Russian Academy of Sciences, Chernogolovka, 142432, Russia
⁵Photon Sciences, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
⁶Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
⁷Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121 Florence, Italy
⁸CNR—Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, 50121 Florence, Italy
⁹FSRC "Crystallography and Photonics," Russian Academy of Sciences, Moscow, 119333, Russia
¹⁰Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119334, Russia

ABSTRACT

Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on synthetic clinopyroxenes at room temperature to a maximum pressure of 40 GPa. We studied two crystals with different compositions. A Na-Ti-pyroxene with formula (Na_{0.86}Mg_{0.14})(Mg_{0.57}Ti_{0.43})Si₂O₆ synthesized at P = 7 GPa and T = 1700 °C, and a Na-pyroxene with composition (Na_{0.886}Mg_{0.085}Fe_{0.029}) (Si_{0.442}Mg_{0.390}Fe_{0.168})Si₂O₆ synthesized at P = 15 GPa and T = 1500 °C. These phases were found to be monoclinic with the space group *C*2/*c* and exhibit K_{To} of 106.8(2), 121.8(4) GPa, respectively. Na-Tipyroxene is more compressible than Fe-bearing Na-Mg-Si-pyroxene, likely due to the fact that the FeO₆ octahedron is significantly more rigid than MgO₆ at high pressure. The formation of Na-rich pyroxenes in the deep mantle is related to crystallization of low-degree alkaline carbonate-silicate melts formed when the crust and mantle interact during the slab descent and its stagnation in the transition zone.

Keywords: Pyroxene, single-crystal X-ray diffraction, high-pressure, high-temperature, phase transitions, equation of state, Earth's mantle