On growth and form of etched fission tracks in apatite: A kinetic approach RAYMOND JONCKHEERE^{1,*}, BASTIAN WAUSCHKUHN¹, AND LOTHAR RATSCHBACHER¹

¹Geologie, TU Bergakademie Freiberg, Bernhard-von Cottastrasse 2, 09599 Freiberg, Germany

ABSTRACT

We discuss differences between the bulk etch rate (v_B) and an alternative radial etch rate (v_R) model for fission-track etching in apatite. A skeletal v_R -model, based on the inferred orientations of the v_R minima and maxima, accounts for the main geometrical features of etched fission tracks, including the track-surface intersections, track channels and their terminations, and the outlines of confined tracks. It unifies the diverse appearances of etched tracks as variations of a basic plan, governed by the orientation of the etched surface and that of the track. The v_R -model also embeds fission-track etching in the mainstream theories of crystal growth and dissolution. However, in contrast to the v_B -model, the v_R -model does not provide bottom-up criteria for discriminating between tracks that are counted by an observer or a computer program and those that are not. Moreover, abandoning the v_B -model implies that basic assumptions of fission-track dating must be reconsidered, in particular that track counting efficiencies depend only on a critical dip angle, and are thus independent of the track registration geometry and the length distribution.

Keywords: Apatite, fission track, etching, fission-track dating