Temperature and pressure effects on the partitioning of V and Sc between clinopyroxene and silicate melt: Implications for mantle oxygen fugacity

YUAN LI^{1,*}

¹State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

ABSTRACT

The partition coefficients of V and Sc between clinopyroxene and silicate melt ($D_{V}^{Cpx/SM}$ and $D_{V}^{Cpx/SM}$) have been determined experimentally at 1200-1400 °C and 0.8-2.3 GPa, using a hornblende- and clinopyroxene-rich mantle rock in graphite-lined $Pt_{0S}Rh_{0S}$ capsules. The results show that the $D_{C}^{Cpx/SM}$ and $D_{\xi px/SM}^{\xi px/SM}$ values decrease from 3.8 to 2.3 and from 2.6 to 1.1, respectively, as the experimental temperature and pressure vary from 1200 °C and 0.8 GPa to 1400 °C and 2.3 GPa. The presence of water in silicate melts may also reduce $D_{V}^{\text{Cpx/SM}}$ and $D_{S}^{\text{Cpx/SM}}$. These results imply that the effects of temperature, pressure, and melt water content on $D_{V}^{Cpx/SM}$ should be considered when using V systematics in cratonic mantle peridotites to constrain cratonic mantle oxygen fugacity (f_{Ω_2}) . However, although the dominant V in the present silicate melt is mixed V^{3+} and V^{4+} , the $D_{C}^{cpx/SM}/D_{C}^{cpx/SM}$ together with literature data obtained at similar f_{0} , shows a nearly constant value of 1.68 ± 0.26, regardless of temperature, pressure, melt composition, and melt water content, indicating that these factors cannot cause fractionation of Sc^{3+} from mixed V^{3+} and V^{4+} in mantle melts through clinopyroxene/silicate melt partitioning. Therefore, in combination with V/Sc systematics in primitive MORBs and arc basalts, using $D_V^{\text{Cpx/SM}}$ and $D_{\text{Sc}}^{\text{Cpx/SM}}$ obtained at 1 bar and dry conditions should be valid to constrain mantle f_{00} , except for the case that the $D^{Cpx/SM}$ for Sc³⁺ can be demonstrated to be fractionated from the $D^{Cpx/SM}$ for mixed V⁴⁺ and V⁵⁺. which are present in oxidized basalts.

Keywords: Oxygen fugacity, upper mantle, vanadium, scandium, partitioning, clinopyroxene, silicate melt