High-pressure phase behavior and equations of state of ThO₂ polymorphs

BETHANY A. CHIDESTER^{1,*}, OLIVIA S. PARDO^{1,†}, REBECCA A. FISCHER^{1,‡}, ELIZABETH C. THOMPSON¹, DION L. HEINZ¹, CLEMENS PRESCHER², VITALI B. PRAKAPENKA², AND ANDREW J. CAMPBELL¹

¹Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A. ²GeoSoilEnviroCARS, University of Chicago, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

ThO₂ is an important material for understanding the heat budget of Earth's mantle, as well as the stability of nuclear fuels at extreme conditions. We measured the in situ high-pressure, high-temperature phase behavior of ThO₂ to ~60 GPa and ~2500 K. It undergoes a transition from the cubic fluorite-type structure (thorianite) to the orthorhombic α -PbCl₂ cotunnite-type structure between 20 and 30 GPa at room temperature. Prior to the transition at room temperature, an increase in unit-cell volume is observed, which we interpret as anion sub-lattice disorder or pre-transformation "melting" (Boulfelfel et al. 2006). The thermal equation of state parameters for both thorianite [$V_0 = 26.379(7)$, $K_0 = 204(2)$, $\alpha K_T = 0.0035(3)$] and the high-pressure cotunnite-type phase [$V_0 = 24.75(6)$, $K_0 = 190(3)$, $\alpha K_T = 0.0037(4)$] are reported, holding K'_0 fixed at 4. The similarity of these parameters suggests that the two phases behave similarly within the deep Earth. The lattice parameter ratios for the cotunnite-type phase change significantly with pressure, suggesting a different structure is stable at higher pressure.

Keywords: XRD data, ThO₂, Raman spectroscopy, ThO₂, phase transition, high-pressure studies, diamond-anvil cell, high-temperature studies, laser-heating