American Mineralogist, Volume 103, pages 161-170, 2018

CROSSROADS IN EARTH AND PLANETARY MATERIALS

High-pressure phase transitions in MgCr₂O₄·Mg₂SiO₄ composition: Reactions between olivine and chromite with implications for ultrahigh-pressure chromitites

MASAKI AKAOGI^{1,*}, AIRI KAWAHARA¹, HIROSHI KOJITANI¹, KAZUAKI YOSHIDA¹, YUKI ANEGAWA¹, AND TAKAYUKI ISHII^{1,}[†]

¹Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

ABSTRACT

Phase relations in the Mg₂SiO₄-MgCr₂O₄ system were investigated in the pressure range of 9.5–27 GPa at 1600 °C to examine the possible deep mantle origin of ultrahigh-pressure (UHP) chromitites in ophiolites. The experimental results indicate that $MgCr_2O_4$ -rich chromite (Ch) coexists with Mg_2SiO_4 rich olivine (OI) below ~13.5 GPa in the equimolar Mg_2SiO_4 · $MgCr_2O_4$ composition. Above ~13.5 GPa, they react to form a three-phase assemblage: garnet (Gt) solid solution in the Mg₄Si₄O₁₂-Mg₃Cr₂Si₃O₁₂ system, modified ludwigite (mLd)-type Mg₂Cr₂O₅ phase and Mg₁₄Si₅O₂₄-rich anhydrous phase B (Anh-B). At ~19.5 GPa, Anh-B is replaced by Mg₂SiO₄-rich wadslevite (Wd). At 22 GPa, MgCr₂O₄-rich calcium titanate (CT) phase coexists with Mg₂SiO₄-rich ringwoodite (Rw). The assemblage of CT+Rw changes to $CT + MgSiO_3$ -rich bridgmanite (Brg) + MgO periclase at 23 GPa. These sequential phase changes indicate that Ch+Ol do not directly transform to CT+Rw but to the three-phase assemblage, Gt+mLd+Anh-B (or Wd), that becomes stable at pressures corresponding to the upper and middle parts of the mantle transition zone. Our results suggest that the UHP chromitites that have been studied so far did not reach transition zone depths during mantle recycling processes of the chromitites, because there is no evidence of the presence of the reaction products of Ol and Ch. If the reaction products, in particular mLd and Anh-B, are found in the UHP chromitites, they are good indicators to estimate the subduction depth of the chromitites.

Keywords: Ultrahigh-pressure chromitite, modified ludwigite, anhydrous phase B, chromite, high pressure, phase relation, mantle transition zone, mantle recycling