American Mineralogist, Volume 102, pages 845-850, 2017

Compressibility and high-pressure structural behavior of Mg₂Fe₂O₅

NICKI C. SIERSCH^{1,*}, TIZIANA BOFFA BALLARAN¹, LAURA UENVER-THIELE², AND ALAN B. WOODLAND²

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ²Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany

ABSTRACT

The compressibility and structural behavior of the novel Mg₂Fe₂O₅ oxide has been investigated by in situ single-crystal X-ray diffraction in a diamond-anvil cell up to a pressure of 17 GPa. The bulk compressibility of Mg₂Fe₂O₅ can be described using a second-order Birch-Murnaghan equation of state (BM2 EoS) with $V_0 = 352.4(2)$ Å³ and $K_0 = 171(4)$ GPa. Three linear BM2 EoS were used to describe the axial compressibility of $Mg_2Fe_3O_5$, which was found to be highly anisotropic. The a and b lattice parameters have very similar compressibilies, with $a_0 = 2.8917(11)$ Å and linear modulus M_a = 572(16) GPa and b_0 = 9.736(3) Å and linear modulus M_b = 583(15) GPa, respectively. The *c*-axis is the most compressible direction as indicated by the smaller linear modulus $[c_0 = 12.520(15) \text{ Å} \text{ and } M_c$ = 404(28) GPa]. The Mg₂Fe₂O₅ structure consists of edge-sharing octahedra alternating with layers of trigonal prisms. The compression behavior of the M-O bonds of the M1 and M2 octahedra and of the M3 prisms depend on their location in either an edge-sharing environment, which makes them stiffer, or a corner-sharing environment where they have more freedom to distort and compress. The main compression mechanism consists of a polyhedral tilting around the M2-O1-M2 angle, which decreases with increasing pressure. Mg₂Fe₂O₅ has recently been added to the list of stable end-members of phases with M_4O_5 stoichiometry, making it a potentially relevant phase in the Earth's upper mantle and transition zone. To develop thermodynamic activity-composition models for high-pressure phases, it is crucial to know the accurate elastic parameters of each individual end-member. Currently these have only been measured for Mg₂Fe₂O₅ (this study) and Fe₄O₅.

Keywords: Mg₂Fe₂O₅, Fe₄O₅, transition zone, high-pressure, compressibility, crystal structure