LETTER

Nitrogen and carbon concentrations and isotopic compositions of the silica clathrate melanophlogite

KRISTIN E. LAZZERI^{1,2}, GRAY E. BEBOUT^{1,*}, AND CHARLES A. GEIGER³

¹Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer Avenue, Bethlehem, Pennsylvania, 18015, U.S.A. ²EA Engineering, Science and Technology, Inc., Layton, Utah 84041, U.S.A. ³Fachbereich Chemie und Physik der Materialien, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

ABSTRACT

The concentrations and isotopic compositions of N and C were obtained for five melanophlogite samples, ideal formula $46SiO_2 \cdot 6(CO_2, N_2) \cdot 2(CH_4, N_2)$, from various localities in Italy and California, U.S.A. The melanophlogite crystals enclathrate 132 to 1674 ppm N presumed to be speciated as molecular N₂ and with $\delta^{15}N_{air}$ ranging from -6.1 to +5.7%. The higher $\delta^{15}N$ values overlap those for organic/sedimentary N, the latter largely with values between 0 and +10%. The samples also contain 1.2 to 2.9 wt% total C, with $\delta^{13}C_{VPDB}$ of -42.9 to -8.7%, obtained from analyses of the bulk C in samples with probable varying proportions of CO₂ and CH₄ in the melanophlogite cages. Although the lower $\delta^{15}N$ values for the melanophlogites (-6.1 and -2.8%) are near upper mantle values ($-5 \pm 2\%$), the full range in N₂ $\delta^{15}N$ can be explained by equilibration with NH⁴₄ in clay minerals bearing an organic-influenced N isotope signature, at temperatures of near 100 °C estimated for melanophlogite crystallization. The lower $\delta^{13}C$ values (as low as -42.9%) are suggestive of equilibration with carbonaceous matter (poorly recrystallized organic material) at high cage CH₄:CO₂, perhaps representing lower oxygen fugacities. The growing number of reports of melanophlogite at terrestrial localities, and its occurrences in organic-rich settings, makes this clathrate mineral an intriguing candidate for preserving records of past surface or near-surface biogeochemical cycling on Earth and perhaps on Mars.

Keywords: Melanophlogite, nitrogen isotopes, carbon isotopes, microporous minerals, mass spectrometry, silica clathrate, biogeochemistry, Mars