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absTracT

Olivine in Hawaiian tholeiitic lavas have high NiO at given forsterite (Fo) contents (e.g., 0.25–0.60 
wt% at Fo88) compared to MORB (e.g., 0.10–0.28 wt% at Fo88). This difference is commonly related 
to source variables such as depth and temperature of melting and/or lithology. Hawaiian olivine NiO 
contents are also highly variable and can range from 0.25–0.60 wt% at a given Fo. Here we examine 
the effects of crustal processes (fractional crystallization, magma mixing, diffusive re-equilibration) 
on the Ni content in olivine from Hawaiian basalts. Olivine compositions for five major Hawaiian 
volcanoes can be subdivided at ≥Fo88 into high-Ni (0.25–0.60 wt% NiO; Ko‘olau, Mauna Loa, and 
Mauna Kea) and low-Ni (0.25–0.45 wt% NiO; Kīlauea and Lō‘ihi), groups that are unrelated to 
major isotopic trends (e.g., Loa and Kea). Within each group, individual volcanoes show up to 2.5× 
variation in olivine NiO contents at a given Fo. Whole-rock Ni contents from Ko‘olau, Mauna Loa, 
Mauna Kea, and Kīlauea lavas overlap significantly and do not correlate with differences in olivine 
NiO contents. However, inter-volcano variations in parental melt polymerization (NBO/T) and nickel 
partition coefficients (DNi

Ol/melt), caused by variable melt SiO2, correlate with observed differences in 
olivine NiO at Fo90, indicating that an olivine-free source lithology does not produce the inter-volcano 
groups. Additionally, large intra-volcano variations in olivine NiO can occur with minimal variation in 
lava SiO2 and NBO/T. Minor variations in parental melt NiO contents (0.09–0.11 wt%) account for the 
observed range of NiO in ≥Fo88 olivine. High-precision electron microprobe analyses of olivine from 
Kīlauea eruptions (1500–2010 C.E.) show that the primary controls on <Fo88 olivine NiO contents are 
fractional crystallization, magma mixing, and diffusive re-equilibration. Core-rim transects of normally 
zoned olivine crystals reveal marked differences in Fo and NiO zoning patterns that cannot be related 
solely to fractional crystallization. These Fo-NiO profiles usually occur in olivine with <Fo88 and are 
common in mixed magmas, although they are not restricted to lavas with obvious petrographic signs of 
mixing. Three-dimensional numerical diffusion models show that diffusive re-equilibration decouples 
the growth zoning signatures of faster diffusing Fe-Mg (Fo) from the somewhat slower Ni. This dif-
fusive “decoupling” overprints the chemical relationships of Fe-Mg, Ni, and Mn inherited from crystal 
growth and influences the calculated fraction of pyroxenite-derived melt (Xpx). Sections of numerical 
olivine that have been affected by diffusive re-equilibration indicate that larger phenocrysts (800 μm 
along c-axis) are >50% more likely to preserve original Xpx compared to smaller phenocrysts (400 μm 
along c-axis) which rarely (6%) recover original Xpx. Sections that are parallel or sub-parallel to the 
c-axis and/or pass near the core of the crystal best preserve growth signatures. Thus, diffusive re-
equilibration, crystal size, and sectioning effects can strongly influence the characterization of mantle 
source lithologies for Hawaiian volcanoes.
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inTroducTion

Hawaiian olivine from tholeiitic basalts are enriched in Ni 
compared to those from mid-ocean ridge basalts (MORB) at a 
given forsterite content (Fig. 1). This enrichment is a feature 
that has received much attention, with diverse interpretations 
(source and crustal) regarding its origin (e.g., Hart and Davis 
1978; Sobolev et al. 2005; Wang and Gaetani 2008; Herzberg 
et al. 2013). One hypothesis advocates that high-Ni parental 

liquids are produced from olivine-free pyroxenite (i.e., second-
ary pyroxenite, formed from the reaction of partial melts of 
eclogite with peridotite; Sobolev et al. 2005, 2007; Herzberg 
2006). Alternatively, somewhat more siliceous magmas can 
influence olivine compositions because they cause higher parti-
tion coefficients for nickel in olivine (e.g., DNi

Ol/melt = 12.5–22.5 
for eclogite melt compared to 7.5–12.5 for basaltic melts; Wang 
and Gaetani 2008), alleviating the need for a multi-stage process 
to form an olivine-free pyroxenite hybrid source component. 
Differences in melting and crystallization temperatures can also 
strongly influence DNi

Ol/melt (Hart and Davis 1978; Kinzler et al. 
1990; Matzen et al. 2013) but are unlikely to affect Hawaiian 
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