Experimental evidence of the formation of intermediate phases during transition of kaolinite into metakaolinite

VICTOR A. DRITS1,*, ARKADIUSZ DERKOWSKI2, BORIS A. SAKHAROV1, AND BELLA B. ZVIAGINA1

1Geological Institute of the Russian Academy of Science, Pyzhevsky per. 7, 119017 Moscow, Russia
2Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Krakow, Poland

ABSTRACT

The phase composition of partially dehydroxylated specimens of two Clay Mineral Society standards, named KGa-1 and KGa-2 samples, were studied by powder X-ray diffraction patterns (XRD), infrared (IR) spectroscopy, and thermogravimetric (TG) data. Each specimen was preheated for 6 h in isothermal conditions, and the heating temperatures were selected to cover the entire range of dehydroxylation for both kaolinites (380–550 °C for KGa-2 and 400–600 °C for KGa-1). Products preheated at 550 and 600 °C are named metakaolinite, as their XRD patterns showed no traces of kaolinite reflections. The contribution of metakaolinite to the experimental XRD pattern and IR spectrum of each preheated specimen (including 3550–3750 and 500–1300 cm$^{-1}$ ranges) was determined by the simulation of the experimental pattern with a sum of the XRD patterns or IR spectra corresponding to the untreated sample and metakaolinite. This procedure showed that the contents of metakaolinite determined independently by diffraction and spectroscopic methods for each of the preheated specimen have almost identical values. Although the modeled and experimental XRD and IR spectra generally match, they contain particular ranges where the intensity differences are particularly significant. The misfits suggest the presence of a third phase forming in partially dehydroxylated kaolinite. To reveal the diffraction and spectroscopic features of the kaolinite and possible intermediate phase (or phases), the contribution of metakaolinite was subtracted from the experimental XRD pattern and diffuse reflectance infrared Fourier transform (DRIFT) spectrum of each preheated specimen. Analysis of the metakaolinite-free XRD patterns and DRIFT spectra supports the idea that each preheated specimen, along with metakaolinite and initial kaolinite, contains a kaolinite-like component termed the intermediate phase. To determine the contents and specific diffraction features of the intermediate phases, the contribution of initial, untreated kaolinite was subtracted from the metakaolinite-free XRD patterns for each preheated specimen. In both samples, the content of the intermediate phase, C_{inter}, decreases with the growth of metakaolinite from 23–25% at the beginning of dehydroxylation to 2% when the XRD-determined content of metakaolinite is 98%. The analysis of the diffraction features of the intermediate phases formed during partial dehydroxylation of the KGa-1 and KGa-2 samples indicates that they represent a new type of defective kaolinite-like structure, in which, along with the one-dimensional periodicity along the c^* axis and the layer displacement vectors typical for natural kaolinite samples, the octahedral sheets of the individual layers of the structure are partially dehydroxylated.

Keywords: Kaolinite, metakaolinite, dehydroxylation, X-ray diffraction, infrared spectroscopy, thermogravimetry

INTRODUCTION

Kaolinite is a natural clay mineral, which occurs in various geological environments and has various industrial applications that require its prior thermal treatment. Comprehensive studies to gain insight into the mechanism of structural transformations of kaolinite governed by the dehydroxylation reaction have been conducted for decades. Notably, Sutich (1986) studied the mechanism of dehydroxylation of the Keokuk (highly ordered) kaolinite sample using powder X-ray diffraction (XRD) and Rietveld refinement method. When dehydroxylated up to 40% after heating at 425 °C, the individual crystallites forming the sample either completely altered to form metakaolinite or retained all structural details of the unheated sample. Following that finding, many other experimental techniques were used to characterize the transition of kaolinite into metakaolinite: magic angle spinning nuclear magnetic resonance (MAS NMR; MacKenzie et al. 1983; Rocha and Kalinowski 1990; Massiot et al. 1995; Rocha 1999; He et al. 2003; Paris 2014), infrared spectroscopy (IR; Frost et al. 1995; Frost and Vassallo 1995; Brindley et al. 1986), thermal analysis methods (Yeskin et al. 1985; Guggenheim and Van Gross 1992, 2001; Dion et al. 1998; Ptacek et al. 2011; Drits and Derkowski 2015), electron paramagnetic resonance (EPR; Djemai et al. 2001), transmission electron microscopy (TEM; Bergaya et al. 1996; Lee et al. 1999). Application of these techniques provided significant insight into the local atomic