Carlsonite, (NH₄)₅Fe₃³⁺O(SO₄)₆·7H₂O, and huizingite-(Al), (NH₄)₉Al₃(SO₄)₈(OH)₂·4H₂O, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio

ANTHONY R. KAMPF^{1,*}, R. PETER RICHARDS², BARBARA P. NASH³, JAMES B. MUROWCHICK⁴, AND JOHN F. RAKOVAN⁵

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ²Geology Department, Oberlin College, Oberlin, Ohio 44074, U.S.A.

³Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

⁴Department of Geosciences, University of Missouri-Kansas City, 420 Flarsheim Hall, 5110 Rockhill Road, Kansas City, Missouri 64110, U.S.A.

⁵Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, U.S.A.

ABSTRACT

The new minerals carlsonite (IMA2014-067), $(NH_4)_5Fe_3^{++}O(SO_4)_6$; 7H₂O, and huizingite-(Al) (IMA2015-014), $(NH_4)_{9}Al_3(SO_4)_8(OH)_2 \cdot 4H_2O$, formed from a natural fire in an oil-bearing shale near Milan, Ohio. Carlsonite crystals are vellow to orange-brown thick tablets, flattened on $\{001\}$, or stout prisms, elongated on [110], up to about 0.5 mm in size. The mineral has a tan streak, vitreous luster, Mohs hardness of 2, brittle tenacity, irregular fracture, perfect {001} cleavage, calculated density of 2.167 g/cm³, and is easily soluble in H₂O. Carlsonite is optically biaxial (–), $\alpha =$ 1.576(1), $\beta = 1.585(1)$, and $\gamma = 1.591(1)$ (white light). Huizingite-(Al) crystals, typically intergrown in light greenish yellow drusy aggregates, are tabular to bladed, flattened on {100}, up to about 0.25 mm in maximum dimension. The mineral has a white streak, vitreous luster, Mohs hardness of 2¹/₂, brittle tenacity, irregular fracture, no cleavage, calculated density of 2.026 g/cm³, and is easily soluble in H₂O. Huizingite-(Al) is optically biaxial (+) with $\alpha = 1.543(1)$. $\beta = 1.545(1)$, and $\gamma = 1.563(1)$ (589.6 nm light). Raman and infrared spectroscopy was conducted on both minerals. Electron microprobe analyses provided the empirical formulas $[(NH_4)_{4,64}Na_{0,24}K_{0,12}]_{\Sigma500}Fe_{305}^3O(SO_4)_6.6.93H_2O(SO_4)_6.93H_2O(SO_4)_6.93H_2O(SO_4)_6.93H_2O(SO_4)$ and $[(NH_4)_{8,76}Na_{0.22}K_{0.02}]_{29,00}(Al_{1.65}Fe_{1:4}^{+})_{22,99}(OH)_{1.98}(H_2O)_{4,02}(SO_4)_{8,00}$ for carlsonite and huizing ite-(Al), respectively. Huizingite compositions with Fe > Al were noted. Carlsonite is triclinic, $P\overline{1}$, a = 9.5927(2), b = 9.7679(3), c =18.3995(13) Å, $\alpha = 93.250(7)^\circ$, $\beta = 95.258(7)^\circ$, $\gamma = 117.993(8)^\circ$, V = 1506.15(16) Å³, and Z = 2. Huizingite-(Al) is triclinic, $P\overline{1}$, a = 9.7093(3), b = 10.4341(3), c = 10.7027(8) Å, $\alpha = 77.231(5)^{\circ}$, $\beta = 74.860(5)^{\circ}$, $\gamma = 66.104(5)^{\circ}$, $V = 66.104(5)^{\circ$ 948.73(9) Å³, and Z = 1. The five strongest lines in the X-ray powder diffraction pattern of carlsonite are $[d_{obs} \text{ in } Å(I)]$ (*hkl*)]: 9.23(100)(002); 8.26(40)(100,011); 7.57(43)(111,11,1011); 4.93(23)(111,120); and 3.144(41)(multiple). Those for huizingite-(Al) are: 8.82(60)(100); 5.04(69)(121); $3.427(100)(\overline{2}\overline{2}1)$; $3.204(68)(\overline{2}11)$; and $3.043(94)(\overline{2}\overline{1}2.312)$.

The crystal structures of carlsonite ($R_1 = 0.030$) and huizingite ($R_1 = 0.040$) are bipartite, each consisting of a structural unit and an interstitial unit. For carlsonite, the structural unit is a $[Fe_3^{3+}O(H_2O)_3(SO_4)_6]^{5-}$ cluster and the interstitial complex is $[(NH_4)_5(H_2O)_4]^{5+}$. For huizingite-(Al), the structural unit is a $[(Al,Fe^{3+})_3(OH)_2(H_2O)_4(SO_4)_3]^{5-}$ cluster and the interstitial complex is $[(NH_4)_0(SO_4)_2]^{5+}$. In the carlsonite cluster, three FeO₄ octahedra share a common vertex, while in the huizingite-(Al) cluster, three (Al,Fe) O_6 octahedra form an abbreviated corner-linked chain. The cluster in carlsonite is the same as that in metavoltine, while the huizingite-(Al) cluster is unique. The range of Lewis basicity of the structural unit in carlsonite is 0.23–0.11 valence units (v.u.) and in huizingite-(Al) it is 0.20–0.12 v.u.; the corresponding Lewis acidities of the interstitial complexes in these structures are 0.13 and 0.14 v.u., respectively. A characteristic Lewis acid strength of 0.13 v.u. is suggested for NH $_{\rm t}^{\pm}$ when it is in its most typical coordinations of 7 to 8. The close structural relationship between carlsonite and metavoltine and the similarity of their powder diffraction patterns suggests that carlsonite may have misidentified as metavoltine in some NH₄-rich mineral assemblages. The new heteropolyhedral cluster in the structure of huizingite-(Al) is of interest because its existence may provide insights into the structural and paragenetic relations among hydrated ferric sulfate minerals. In particular, it may exist as a complex in aqueous solutions or in solid-state transformations involving the formation and/or breakdown of sideronatrite-style $[Fe^{3+}(SO_4)_1]^{3-}$ chains. We surmise that it may be a more commonly formed mineral than its abundance would indicate and that its rarity may reflect a narrow stability range, and so a transitory existence.

Keywords: Carlsonite, huizingite-(Al), new mineral, crystal structure, Raman spectroscopy, infrared spectroscopy, Lewis acidity-basicity, Huron Shale burn site, Milan, Ohio