Rare-earth perovskites along the CaTiO₃-Na_{0.5}La_{0.5}TiO₃ join: Phase transitions, formation enthalpies, and implications for loparite minerals

DAWEI FENG¹, RADHA SHIVARAMAIAH¹, AND ALEXANDRA NAVROTSKY^{1,*}

¹Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California-Davis, Davis, California 95616, U.S.A.

ABSTRACT

The mineral loparite is the principal ore of the light rare earth elements (LREE) with solid solution compositions in the quaternary system perovskite-lueshite-tausonite-loparite (CaTiO₃-NaNbO₃-SrTiO₃-Na_{0.5}Ln_{0.5}TiO₃) (Ln = La, Ce, Pr, Nd). In this study, perovskite solid solutions Ca_{1-2x}Na_xLa_xTiO₃ ($0 \le x \le 0.50$) along the perovskite-loparite join were synthesized using solid-state sintering methods. XRD analysis indicates that as the Na+La content increases, the structure changes from orthorhombic to tetragonal. The enthalpies of formation at 298 K from the constituent oxides ($\Delta H_{f,ox}^{\circ}$) and from the elements ($\Delta H_{f,el}^{\circ}$) have been determined using high-temperature oxide melt solution calorimetry in molten 3Na₂O·4MoO₃ at 973 K. Enthalpy of formation from oxides $\Delta H_{f,ox}^{\circ}$ becomes more exothermic with increasing Na+La content, suggesting a stabilization effect of the substitution Ca²⁺ $\rightarrow 0.5$ Na⁺ + 0.5La³⁺. The observed trend of increasing thermodynamic stability with decreasing structural distortion is in agreement with that seen in many other ABO₃ perovskites. The thermodynamic stability of perovskite solid solutions Ca_{1-2x}Na_xLa_xTiO₃ ($0 \le x \le 0.50$) along the CaTiO₃-Na_{0.5}La_{0.5}TiO₃ join provides insights into the natural occurrence of loparite minerals (La,Na,Sr,Ca)(Ti,Nb,Ta,Fe³⁺)O₃.

Keywords: Rare earth perovskites, calorimetry, enthalpy of formation, loparite