Detection of liquid H₂O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas?

ROSARIO ESPOSITO^{1,2,*}, HECTOR M. LAMADRID³, DANIELE REDI⁴, MATTHEW STEELE-MACINNIS⁵, ROBERT J. BODNAR³, CRAIG E. MANNING¹, BENEDETTO DE VIVO², CLAUDIA CANNATELLI^{2,6}, AND ANNAMARIA LIMA²

¹Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, California 90095-1567, U.S.A. ²DISTAR. Università Federico II. Via Mezzocannone 8, Napoli, 80134, Italy

³Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, Virginia 24061, U.S.A.

⁴BiGea, Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Via di Porta San Donato 1, 40126, Bologna, Italy ⁵Department of Geosciences, University of Arizona, Tucson, Arizona 85721, U.S.A.

⁶Department of Geology and Andean Geothermal Center of Excellence (CEGA), Universidad de Chile, Santiago 8370450, Chile

ABSTRACT

Fluids exsolved from mafic melts are thought to be dominantly $CO_2-H_2O \pm S$ fluids. Curiously, although CO_2 vapor occurs in bubbles of mafic melt inclusions (MI) at room temperature (*T*), the expected accompanying vapor and liquid H₂O have not been found. We reheated olivine-hosted MI from Mt. Somma-Vesuvius, Italy, and quenched the MI to a bubble-bearing glassy state. Using Raman spectroscopy, we show that the volatiles exsolved after quenching include liquid H₂O at room *T* and vapor H₂O at 150 °C. We hypothesize that H₂O initially present in the MI bubbles was lost to adjacent glass during local, sub-micrometer-scale devitrification prior to sample collection. During MI heating experiments, the H₂O is redissolved into the vapor in the bubble, where it remains after quenching, at least on the relatively short time scales of our observations. These results indicate that (1) a significant amount of H₂O may be stored in the vapor bubble of bubble-bearing MI and (2) the composition of magmatic fluids directly exsolving from mafic melts at Mt. Somma-Vesuvius may contain up to 29 wt% H₂O.

Keywords: Raman spectroscopy, Mt. Somma-Vesuvius, volatile solubility, mafic melt, sulfur budget, melt inclusion, fluid inclusion, heating experiments