Electronic transitions of iron in almandine-composition glass to 91 GPa

SUSANNAH M. DORFMAN^{1,*}, SIAN E. DUTTON², VASILY POTAPKIN³, ALEKSANDR I. CHUMAKOV⁴, JEAN-PASCAL RUEFF^{5,6}, PAUL CHOW⁷, YUMING XIAO⁷, ROBERT J. CAVA⁸, THOMAS S. DUFFY⁹, CATHERINE A. MCCAMMON³, AND PHILIPPE GILLET¹⁰

¹Department of Geological Sciences, Michigan State University, East Lansing, Michigan 48824, U.S.A. ²Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K. ³Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany ⁴European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France ⁵Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 Saint-Aubin, F-91192 Gif-sur-Yvette, France ⁶Sorbonne Universités, UPMC Université Paris 06, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris, France ⁷HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, U.S.A. ⁸Department of Chemistry, Princeton University, Princeton, New Jersey 08544, U.S.A. ⁹Department of Geosciences, Princeton University, Princeton, New Jersey 08544, U.S.A.

¹⁰Earth and Planetary Science Laboratory, Ecole polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland

ABSTRACT

Valence and spin states of Fe were investigated in a glass of almandine (Fe₃Al₂Si₃O₁₂) composition to 91 GPa by X-ray emission spectroscopy and energy- and time-domain synchrotron Mössbauer spectroscopy in the diamond-anvil cell. Changes in optical properties, total spin moment and Mössbauer parameters all occur predominantly between 1 bar and ~30 GPa. Over this pressure range, the glass changes from translucent brown to opaque and black. The total spin moment of the glass derived from X-ray emission spectroscopy decreases by ~20%. The complementary Mössbauer spectroscopy approaches reveal consistent changes in sites corresponding to 80-90% Fe²⁺ and 10-20% Fe³⁺. The high-spin Fe²⁺ doublet exhibits a continuous decrease in isomer shift and increase in line width and asymmetry. A high-spin Fe³⁺ doublet with quadrupole splitting of ~1.2 mm/s is replaced by a doublet with quadrupole splitting of ~1.9 mm/s, a value higher than all previous measurements of high-spin Fe³⁺ and consistent with low-spin Fe³⁺. These observations suggest that Fe³⁺ in the glass undergoes a continual transition from a high-spin to a low-spin state between 1 bar and ~30 GPa. Almandine glass is not expected to undergo any abrupt transitions in electronic state at deep mantle pressures.

Keywords: Silicate glass, spin transitions, Mössbauer spectroscopy, nuclear forward scattering, X-ray emission spectroscopy