LETTER

Chemical composition and crystal structure of merrillite from the Suizhou meteorite

XIANDE XIE^{1,4}, HEXIONG YANG^{2,*}, XIANGPING GU³ AND ROBERT T. DOWNS²

¹Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China

²Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ³School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, 410083, China ⁴Guangdong Key Laboratory of Mineral Physics and Materials, Guangzhou, 510640 China

ABSTRACT

Merrillite, ideally Ca₉NaMg(PO₄)₇, is an important accessory phosphate mineral in many different groups of meteorites, including martian meteorites, and a major carrier of rare earth elements (REE) in lunar rocks. By means of electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy, we present the first structure determination of merrillite with a nearly ideal chemical composition, Ca_{9.00}Na_{0.98}(Mg_{0.95}Fe_{0.06})_{21.01} (P_{1.00}O₄)₇, from the Suizhou meteorite, a shock-metamorphosed L6-chondrite. Suizhou merrillite is trigonal with space group *R*3*c* and unit-cell parameters *a* = 10.3444(3), *c* = 37.0182(11) Å, and *V* = 3430.5(2) Å³. Its crystal structure, refined to *R*₁ = 0.032, is characterized by a structural unit consisting of a [(Mg,Fe)(PO₄)₆]¹⁶⁻ complex anion that forms a "bracelet-and-pinwheel" arrangement. Such structural units are linked by interstitial complexes with a formula of [Ca₉Na(PO₄)]¹⁶⁺, which differs from that of [Ca₉(PO₃[OH])]¹⁶⁺, [Ca₉(PO₃F)]¹⁶⁺, [Ca₉(Ca_{0.5}□_{0.5})(PO₄)]¹⁶⁺, or [(Ca_{9-x}REE)_x(Na_{1-x}□_x) (PO₄)]¹⁶⁺ in terrestrial whitlockite, terrestrial/extraterrestrial bobdownsite, meteoritic Ca-rich merrillite, or lunar REE-rich merrillite, respectively. The Suizhou merrillite is found to transform to tuite at high pressures, pointing to the likelihood of finding REE-bearing tuite on the Moon as a result of shock events on REE-merrillite.

Keywords: Merrillite, whitlockite, Suizhou meteorite, crystal structure, Raman spectroscopy