The MnCO₃-II high-pressure polymorph of rhodocrosite Marco Merlini^{1,*}, Michael Hanfland², and Mauro Gemmi³

¹Dipartimento di Scienze della Terra, Università degli Studi di Milano, via Botticelli 23, 20133 Milano, Italy ²European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, Cedex 9, France ³Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, I-56127 Pisa, Italy

ABSTRACT

We investigated the behavior of MnCO₃ in the pressure range 0–50 GPa and ambient temperature by synchrotron X-ray single-crystal diffraction technique. MnCO₃ maintains the calcite-type structure ($R\overline{3}c$ symmetry) up to 44 GPa. Above this pressure we observed a phase transition. The highpressure phase, MnCO₃-II, is triclinic, with cell parameters a = 2.928(2), b = 4.816(4), c = 5.545(4)Å, $\alpha = 101.71(6)^\circ$, $\beta = 94.99(6)^\circ$, $\gamma = 89.90(6)^\circ$, and V = 76.28(10) Å³ at 46.8 GPa. The structure is solved with the charge flipping algorithm. MnCO₃-II is isostructural with CaCO₃-VI. The density increase on phase transition is 4.4%. The occurrence of CaCO₃-VI structure in MnCO₃ composition indicates that CaCO₃-VI structure is also adopted by carbonates with cations smaller than calcium.

Keywords: Carbonates, high-pressure crystal structure, rhodocrosite, single crystal